Village of Innisfree Special Council Meeting Innisfree Council Chambers, Innisfree AB March 26, 2021 @ 10:00 a.m.

- 1. Call to Order
- 2. Agenda
 - a. Deletions/Additions:
 - b. Adoption of Agenda
- 3. New Business
 - a. Village of Innisfree Solar Panel Project Solar Ninja's Energy Solutions Ltd.
 - b. Tinning/Shingling Birch Lake Campground Administration Building Revised Quote Received March 17, 2021
- 4. Adjournment

STANDARD ENGAGEMENT LETTER

Client Name	Village of Innisfree – Aaron Cannan	

Client Contact Address 5116 50 Ave Innisfree AB T0B 2G0

Date March 20 2021

Project Engagement Terms

Relationship:

SolarNinjas agrees to be sub-contracted by Innisfree Village Council – Village of Innisfree for electrical & solar design/installation work as required and is accountable directly to Aaron Cannan and/or CAO of Innisfree AB as point of contact. SolarNinjas carries all necessary licenses, insurances, & WCB coverages to perform the requested work.

Below please find the details of our initial work scopes. The Total estimated budget for this initial service is outlined in the Estimated Budgets section C.

A. SolarNinjas will provide the following services at your request:

- Produce a work plan (including costing) for each component of work required, updated to March 2021 pricing. Time and materials to be outlined.
- Update engineering documents and plans as needed to proceed with any or all of 3 solar projects (Town office, Workshop, Water Treatment site)
- Engage with MCCAC and co-ordinate with village officials to get applications submitted for the 3 solar projects
- Co-ordinate with utility and wires owners to pre-approve and review planned solar installations with documented report summarizing each project ready to execute.
- Execute any electrical work requested by the client as needed to prepare for solar installations (separately estimated panel upgrades, lighting upgrades, general wiring repairs as needed while on site).
- Other services as requested by authorized village staff at our rates outlined below.

Payment in full will be required prior to document handover. We kindly ask for \$1575.00 deposit made available within 1 week of signing to secure our services. This deposit and the final invoice for this contract will be deducted from the cost of the 3 solar projects.

We will be accountable for hours and materials costs on an ongoing basis, and can give an update regarding billable time or progress on request (i.e. weekly). We intend to be on time and budget but a great portion of this depends on the client and site conditions.

The following are important site specific points to note as they impact work flow and cost:

- Our previous work product for the client will make this process quicker and easier and at significantly reduced cost versus starting from scratch.
- Document Work must be done quickly due to regulatory conditions (rebate program budget may run out in the near future so preapproval stage should be reached as quickly as possible).
- A visit to the town to review site conditions and confirm installation details will be required.

B. Our Costs:

The fees for our services on this project will be based on:

\$90/hr for Journeymen Electricians
\$65/hr for 3rd/4th period Apprentice Electricians
\$45/hr for 1st/2nd period Apprentice Electricians
\$35/hr for Labour / Unskilled trades work
Daily Truck Charge of \$85 per worker on work days.

We are open to utilizing locally provided labour to assist on our projects for cost control and encourage the client to arrange interested persons or local professionals for us to interview who may benefit from the training and experience. We want to contribute to the local community as much as possible by using local service providers for project components where practical (food, supplies, ground work, labour assistance, media and promotion).

- C. Our estimated budgets for the required services based on our conversations and site visit:
- Update and re-issue Solar PV Design based on existing documentation with new products available. Produce work package ready for
 permits, including building diagrams, product datasheets, and full cost estimates. Provide solar models indicating power production.
- Estimate and verify electrical work required to current codes (updated since last estimate) including site visit.

Total Budget amount: \$3,150 + GST

The final invoice amount will be deducted from the cost of your solar project if SolarNinjas is hired to provide this service for you.

At your request, SolarNinjas will provide you an audit on costs as we proceed with your projects. We intend to be on time and budget and will justify any variance in cost.

If you agree that the foregoing fairly sets out your understanding of our mutual responsibilities, please sign a copy of this letter in the space indicated below, and return it to me by email and/or physical delivery. Please send to **mike@solarninjas.energy**

Payment accepted by certified cheque/bank draft, interact email transfer to <u>payment@solarninjas.energy</u>, cash and credit card. Please inform us if you intend to pay by credit card so we can apply the appropriate processing fee of 3%.

Yours sincerely,

in This

Michael Thomas Principal, SolarNinjas Energy Solutions Ltd. #724, 10301 104 St, Edmonton AB (Shipping) #202, 12908 54 St, Edmonton AB (Offices) Mike@solarninjas.energy / 780 – 920 – 9120

Agreed and Accepted:

Date, Name, Print & Sign Innisfree Authorized Representative

Village of Innisfree (CAO)

From:Aaron Cannan <aaroncannan@gmail.com>Sent:March 24, 2021 10:44 AMTo:Village of Innisfree (CAO); debmcmcom@yahoo.com; will.oudshoorn@gmail.comSubject:Fwd: Grant/Funding Request

------ Forwarded message ------From: **Brunet, Juanita (Stubbs, Shannon - MP)** <<u>juanita.brunet.725@parl.gc.ca</u>> Date: Wed., Mar. 24, 2021, 10:36 a.m. Subject: Grant/Funding Request To: Michael Thomas <mike@solarninjas.energy>, <u>aaroncannan@gmail.com</u> <<u>aaroncannan@gmail.com</u>>

Good day Mike and Aaron,

I received the following information from the Parliamentary Library regarding your request:

Further to your request to the Library of Parliament, here is a list of federal funding opportunities for the Village of Innisfree. They are wanting to add solar power and electric vehicle charging infrastructure (they are a key stopover point between destinations), and LED/Efficiency measures to town owned facilities including the following:

- Water Treatment Facility
- Town office
- Town Maintenance shop
- Town Campground

Programs often have specific requirements, including eligibility, application procedures and deadlines. As well, programs can change, be replaced or terminated without notice. Visiting a program's website regularly for details and updates is recommended.

Federal resources

Farm Credit Canada (FCC)

<u>FCC AgriSpirit Fund</u> is about enhancing rural communities. If the municipality has less than 150,000 people, the capital component of the project may qualify for a donation between \$5,000 and \$25,000.

Infrastructure Canada (IC)

• The <u>Federal Gas Tax Fund</u> provides municipalities with a permanent, predictable and indexed source of long-term funding, enabling construction and rehabilitation of core public infrastructure. It offers

local communities the flexibility to make strategic investments across 18 different project categories. Please see the agreement for <u>Alberta</u> for more details.

Federation of Canadian Municipalities (FCM)

• The <u>Green Municipal Fund</u> of the <u>Federation of Canadian Municipalities</u> may be of assistance. <u>Funding opportunities</u> cover plans, studies and capital projects.

Natural Resources Canada (NRCan)

- The <u>Electric Vehicle and Alternative Fuel Infrastructure Deployment Initiative</u> covers projects such as new and permanent installation for EV chargers serving on-road, licensed vehicles located in Canada. Municipal governments are eligible. *Note: Request for Proposals of the Electric Vehicle and Alternative Fuel Infrastructure Deployment Initiative is now closed, but the Village of Innisfree may wish to monitor this page for future announcements.*
- The Zero Emission Vehicle Infrastructure Program supports "electric vehicle charging infrastructure deployment in parking areas intended for public use. Parking areas can be privately or publicly owned and operated." Note: Request for Proposals for programme is now closed, but the Village of Innisfree may wish to monitor this page for future announcements.

Additional resources

The <u>Municipal Climate Change Action Center</u> (MCCAC) proposes many <u>Funding programs</u> that could be of interest to a municipality in Alberta. Especially see:

- o <u>Alberta Municipal Solar Program</u>
- o <u>Electric Vehicles for Municipalities Program</u>
- Municipal Energy Manager Program

Should you have any further questions or concerns, please do not hesitate to contact our office.

Best regards,

Juaníta Brunet

Senior Case Advisor


Office of Shannon Stubbs, M.P. | Shadow Minister

For Public Safety and Emergency Preparedness

Lakeland (Alberta)

- E: juanita.brunet.725@parl.gc.ca
- T: 780-657-7075

F: 780-657-7079

780 920 9120 mike@solarninjas.energy Www.SolarNinjas.Energy

Page 7

Introduction

This summary document outlines the potential for four sites chosen for consideration as solar installations. They are presented in order with benefits and details documented for each and budget summaries combined at the end.

During the course of this design period:

- An additional "first time" applicant rebate has come available to you from the Municipal Climate Change Action Centre over and above the existing rebate.
- Wires owners (ATCO) have updated and tightened their criteria for approving solar installations dramatically, forcing changes to our plans.

While I am not able to be there in person for your November Council meeting (Nov 21 2018) I will be available to teleconference in for questions and discussion and would be happy to come out on another date to speak individually or as a group at your convenience. There is a great deal of information here to digest.

My conclusions are that all 4 sites are viable and beneficial and while two happen to be surplus generators the other two have significant cost offset and other benefits to consider due to location and future uses.

Please keep in mind that we are proposing long-life cycle products here with serious benefits extending out 5 to 50 years. As 5 new natural gas power plants worth billions come online to add costs to power bills, and governments change resulting in the potential elimination of direct incentives for these projects I urge consideration on a number of fronts.

Thank you for your time, attention, support and consideration!

Please phone me directly at any time at 780 920 9120 to discuss or clarify any detail.

Michael Thomas – Principal – SolarNinjas Energy Solutions Ltd.

Structural Notes

Water Treatment Plant

- Screw piles to be engineered and documented for structural load support
- Ground conditions may require additional lengths and above-ground adjustment to level base plates •
- Non Adjustable Racking suggested Extra attention paid to wind loading •

New Public Works

- Anchors must be seated into full trusses, requiring additional strapping material to be installed as needed.
- 3/4 Inch plywood strips to be used as decking (permanent) inside attic to improve walkability for worker and material
- Surface wiring to electrical panel to utilize cantress (unistrut) mounted across studs in-wall.

Village Office

Vaulted ceilings and age of building necessitate additional care to ensure centre truss anchor installation

Rv Park

- Screw piles to be engineered and documented for structural load support
- Non Adjustable Racking suggested Extra attention paid to wind loading •

No serious negative structural engineering issues identified on any project site

Site Protection Notes

Water Treatment Plant

- Consider chain link fence with access gate on one side facing the access to existing pump house to remove • driving access & simplify buried electrical.
- Consider chain link fence along full length behind array and across the bottom to existing short fence. •
- Posts can be installed after screw piles to avoid potential buried line issues after PV installation, completion at some point in the future as needed.
- Double layer landscape cloth and gravel suggested under arrays to eliminate future landscape • maintenance (spray once per year with light vinegar/salt-water combo or every several years with approved herbicide from a backpack sprayer)

New Public Works

- No special protection notes
- Protected by location (roof)

Village Office

- No special protection notes
- Protected by location (roof)

Rv Park

- Consider all 4 sides chain link fencing (distance from array and height to be determined)
- Determine level of desired access control and aesthetic balance based on local concerns regarding vandalism or theft and base fencing type and distances on that assessment.
- Consider addition of trail-cam or other motion sensing video monitoring from 2 angles of approach •
- Post signage telling the story of the project and intentions of council to encourage buy-in and deter vandalism by community engagement
- Consider planting wild roses or other thorny bushes on slope and to sides of installation area, which can be both beautiful and a low cost deterrence against rear-approach to system from highway and parkland.
- Immediate area under arrays to be converted to sand or gravel on landscape fabric, additional attention to be paid to maintaining natural grassy beauty outside the footprint while limiting maintenance to maybe one annual cutting.

Page 11

Project Safety Notes

Water Treatment Plant

- Ensure Alberta-One-Call Report is filed before start of project •
- Screw Pile Installation by third party must be insured and follow an equivalent or superior Health & Safety • Program to SolarNinjas
- Co-Ordinate with local site management regarding final power connection to ensure safe interconnecting work and no unplanned power outages at facility
- Designated worker for emergency response notification and attendance
- Additional grounding points at array required

New Public Works

- 40ft extension ladder required (devise tie-off method at roofline)
- Specialty fall arrest required (ground based or permanent roof installation on opposite slope) with site specific safety plan
- Full Mask Respirator inside attic space

Village Office

- Standard residential rooftop fall arrest anchor system use
- Nearby overhead power and telecom lines in vicinity of preferred access locations
- Electrical panel replacement for safety advised

Rv Park

- Ensure Alberta-One-Call Report is filed before start of project
- Screw Pile Installation by third party must be insured and follow an equivalent or superior Health & Safety Program to SolarNinjas
- Long distance trench work will require sawhorse, large cone, stake and rope or other barricade while open
- Nearby live underground electrical infrastructure (low voltage single phase)
- Work area next to meter base and distribution cabinet to be barricaded off with rope access
- Additional grounding points at arrays required

Media Plan

Depending on the extent and scope of selected projects. We propose using the following tools to maximize the exposure Innisfree will receive from going solar.

- Engage with Brazeau County Drayton Valley Area where a robust "top-up" solar rebate is in place and cross promote as municipalities taking charge of this sector. They have a massive online community reach and friendly local press which leads to mass media stories.
- Ensure HiWay16 News follows the projects and progress with regular updates.
- Directly engage the local public in the following ways
 - o Physical notices and invitations to engage to properties within viewable range of projects
 - o Town notice boards and email/mailing list notices for all residents
 - Key business/farm/local government personal outreach to their private networks to notify and support.
 - Town social media and website consistent updates and conversation
- Well written press release to several hundred Alberta media organizations, newsdesks, personalities, and tiplines. (This can require paid access for a small fee to an up to date press release roster of up to several thousand contacts)
- Targeted invitations to CBC, TheTyee, GreenBusiness Magazine, Green Energy Futures, Local Members of Parliament and Legislature, relevant provincial and federal government departments/ministries, organizations like Decentralised Energy Canada, NAIT/UofA/Vermillion & Related renewable energy program heads and student groups.
- Outreach to neighbouring municipalities to participate in post-installation celebration and study of system results.
- Ground and Drone based photo and video media generated and utilized for promotion for years to come, released to media with pre-written news-blurbs and ready to release short articles.
- Large highway sign/road sign near RV Park and Innisfree turnoff at gas station in partnership with SolarNinjas for promotion and invitation to the public (in conjunction with electric vehicle charging especially at RV park and town centre office/public works)
- Social media paid ads (blog posts, website page, SM Posts) targeting the geographical region to ensure full capture.
- Pre-Written talking points issued to all stakeholders, local representatives, and interested parties covering:
 - Environmental Benefits of solar at municipal scale
 - o Reduced ongoing utility costs
 - o Cost certainty for utilities having pre-paid for system installation
 - o Technological merit and legitimacy of moving into the future with green technology
 - o Other key points as desired

Electrical Notes

Water Treatment Plant

- Ensure Alberta-One-Call Report is filed before start of project and private locators if needed to mark with • extra care and attention around building exterior wall
- PVC Conduit underground suggested with sleeves at points of entry/exit from grade
- Hand Trenching inside fence-line around pump house, mechanical trenching permitted outside fence-line •

New Public Works

- EMT Conduit on interior wall surface to ceiling penetration area
- Additional Strapping for strength ٠
- Rooftop AC combiner box will be required with AC Circuit Breakers (Rail Mounted @ south end of solar • array. Nema4 stainless.

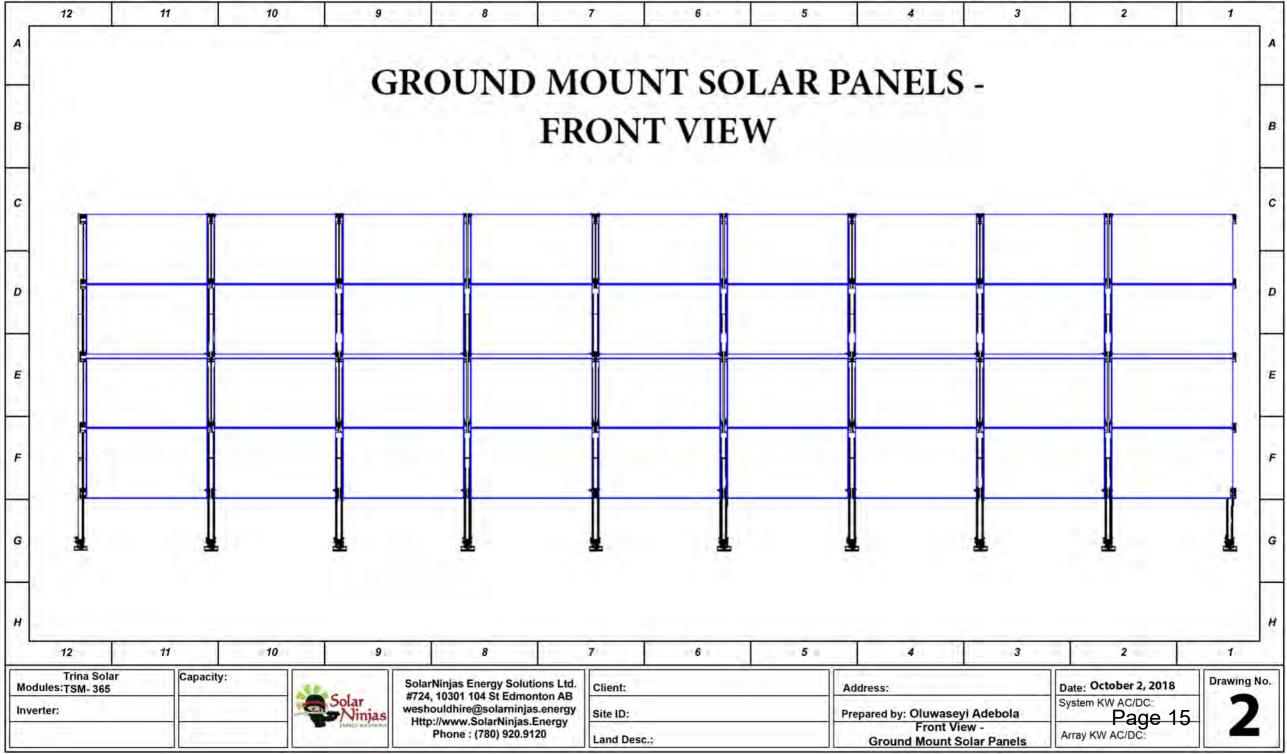
Village Office

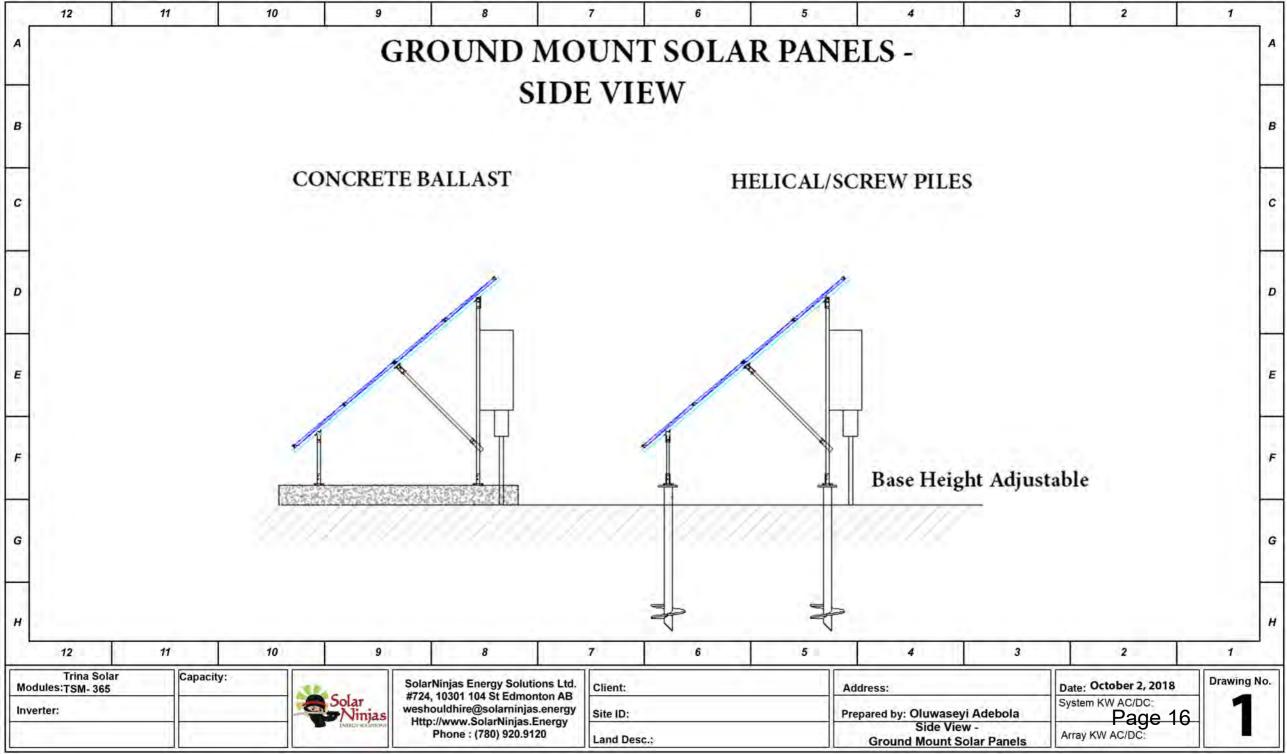
- Surface wiring on rear of building advised with teck to PVC transition
- Nearby overhear power and telecom lines in vicinity of preferred access locations •
- Electrical panel replacement for safety advised •

Rv Park

- Ensure Alberta-One-Call Report is filed before start of project
- Ensure accurate site drawings map precise underground wire locations from array to main utility interaction point.
- Consider additional protection at mid-depth (pressure treated lumber, extra layer of barrier warning tape) •
- PVC Conduit (sleeved) for main home run from main combiner box at arrays •
- Teck Cable as needed between inverters and main AC combiner at arrays •
- 2 ground points per array independent of screw piles (ground rods) •

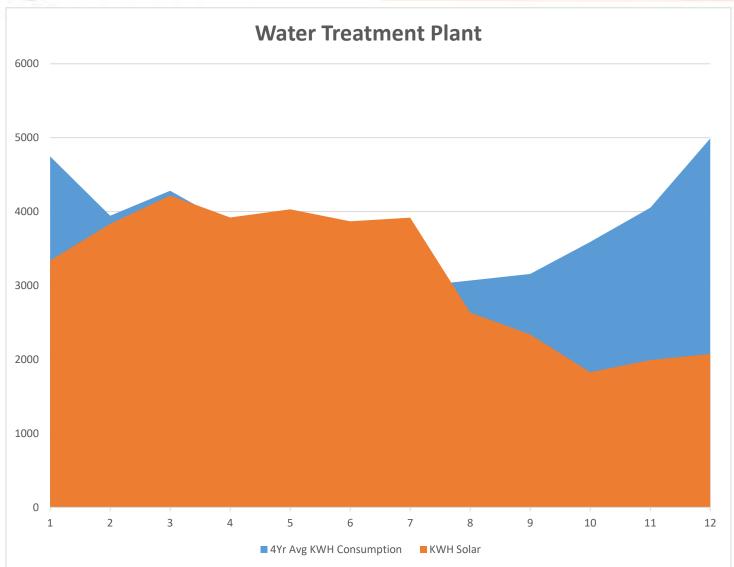
Innisfree Water Treatment Plant


Using 4 year average consumption this site appears to average ~85% energy offset or a real dollars direct energy generation value of approximately \$2128 per year initially using August 2018 energy prices. Annual billing for the most recent 12 month period was approximately \$6,000.


This savings would scale upwards with the increasing costs of energy from increased demand and from newly constructed power plants (billions of dollars worth) coming online in the next handful of years. This represents a shield against future energy costs that scales upward with the future price of energy.

Transmission and distribution costs would also be impacted in your benefit. These charges are combined on your billing and therefore impossible to calculate specifically however the TRANSMISSION portion tends to be directly tied to KWH energy consumption and would therefore reduce by a portion equivalent to your energy offset. Distribution costs tend to remain the same and are charged as a flat rate. This extra savings on a commercial site this size may range in the \$500 to \$1,000 annual savings, but cannot be specifically estimated at this time. These savings would also scale up with the costs of transmission increasing.

A benefit from a large visible feature such as this added to the landscape enhances the prestige of the municipality and its ability to attract and retain residents, businesses and investment.

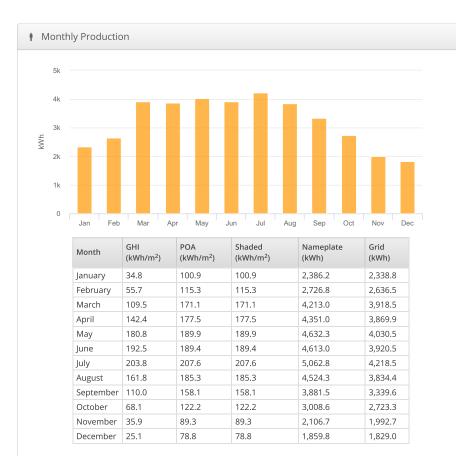


780 920 9120 🕓

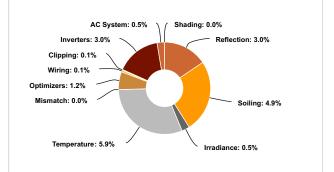
mike@solarninjas.energy 🖂

Www.SolarNinjas.Energy 🌐

Estimate Month	4Yr Avg KWH Consumption	KWH Solar	Difference KWH	Energy Offset
1	4747.5	3339.6	1407.9	70.34%
2	3945	3834.4	110.6	97.20%
3	4282.5	4218.5	64	98.51%
4	3827.5	3920.5	-93	102.43%
5	3577.5	4030.5	-453	112.66%
6	2745	3869.9	-1124.9	140.98%
7	2982	3918.5	-936.5	131.41%
8	3067.5	2636.5	431	85.95%
9	3157.5	2338.8	818.7	74.07%
10	3590	1829	1761	50.95%
11	4053.333	1992.7	2060.633	49.16%
12	4990	2075	2915	41.58%
Total or Average	44965.333	38003.9	6961.433	84.52%



WTP Ground Mount (Trina365s+SE) Innisfree WTP, Innisfree AB

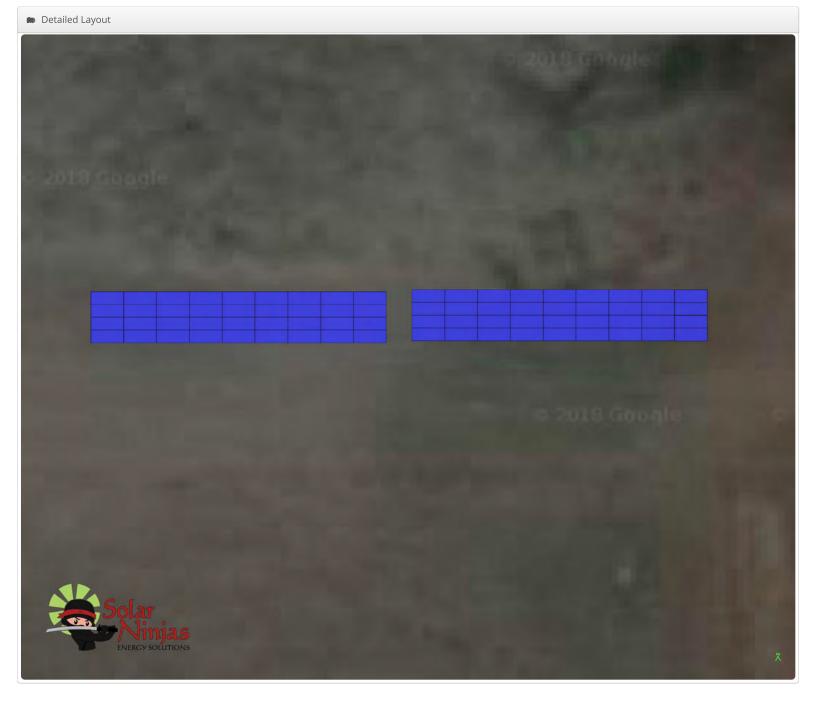

🕅 Report	
Project Name	Innisfree WTP
Project Address	Innisfree AB
Prepared By	Michael Thomas mike@solarninjas.energy

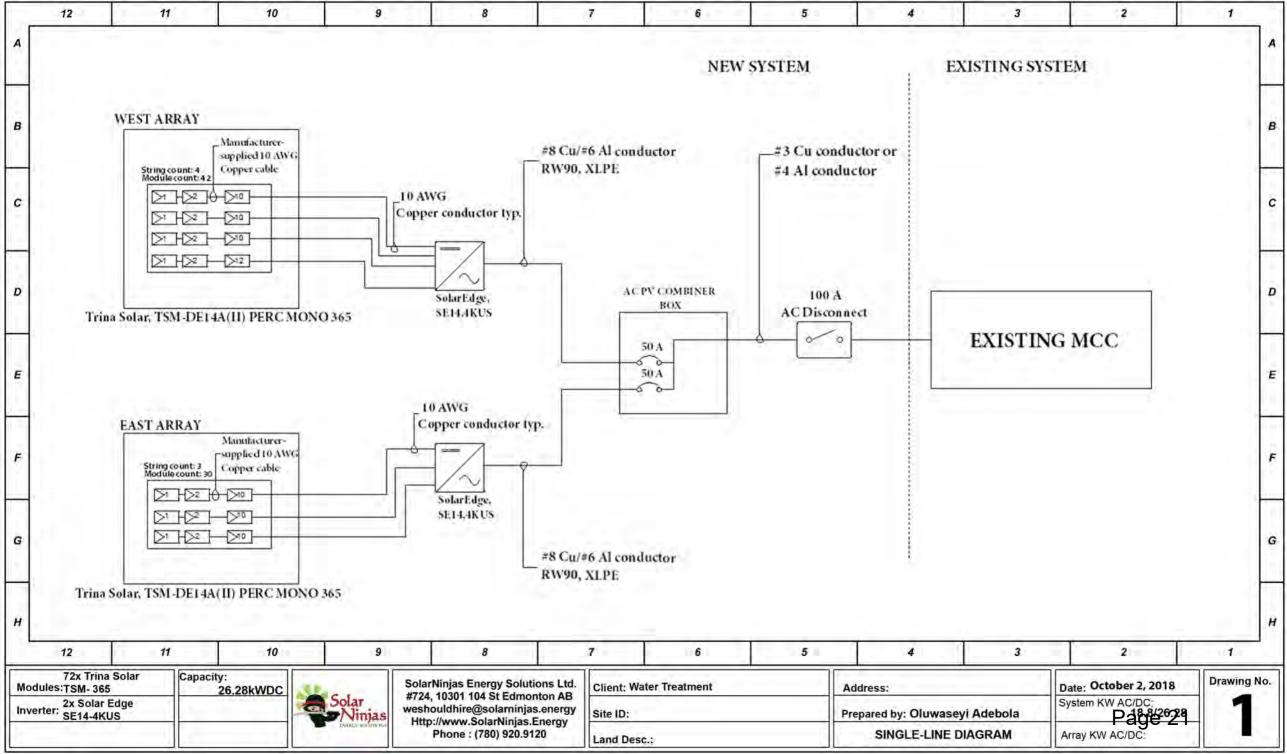
🕴 System Metr	ics
Design	WTP Ground Mount (Trina365s+SE)
Module DC Nameplate	26.3 kW
Inverter AC Nameplate	28.8 kW Load Ratio: 0.91
Annual Production	38.65 MWh
Performance Ratio	82.4%
kWh/kWp	1,470.8
Weather Dataset	TMY, 10km Grid, meteonorm (meteonorm)
Simulator Version	9b6ea3edba-740144e756-4cf1fffc4d- a6b7ed69dd

🙀 Sources of System Loss

Solar Nin

Annual Production Report produced by Michael Thomas


🍋 Annual I	Production		
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,320.4	
	POA Irradiance	1,785.3	35.2%
Irradiance	Shaded Irradiance	1,785.3	0.0%
(kWh/m²)	Irradiance after Reflection	1,732.2	-3.0%
	Irradiance after Soiling	1,647.9	-4.9%
	Total Collector Irradiance	1,647.9	0.0%
	Nameplate	43,366.0	
	Output at Irradiance Levels	43,136.6	-0.5%
	Output at Cell Temperature Derate	40,603.2	-5.9%
F	Output After Mismatch	40,603.1	0.0%
Energy (kWh)	Optimizer Output	40,115.9	-1.2%
()	Optimal DC Output	40,070.4	-0.1%
	Constrained DC Output	40,047.9	-0.1%
	Inverter Output	38,846.5	-3.0%
	Energy to Grid	38,652.3	-0.5%
Temperature N	letrics		
	Avg. Operating Ambient Temp		7.1 °C
	Avg. Operating Cell Temp		25.4 °C
Simulation Met	rics		
	0	perating Hours	4602
		Solved Hours	4602

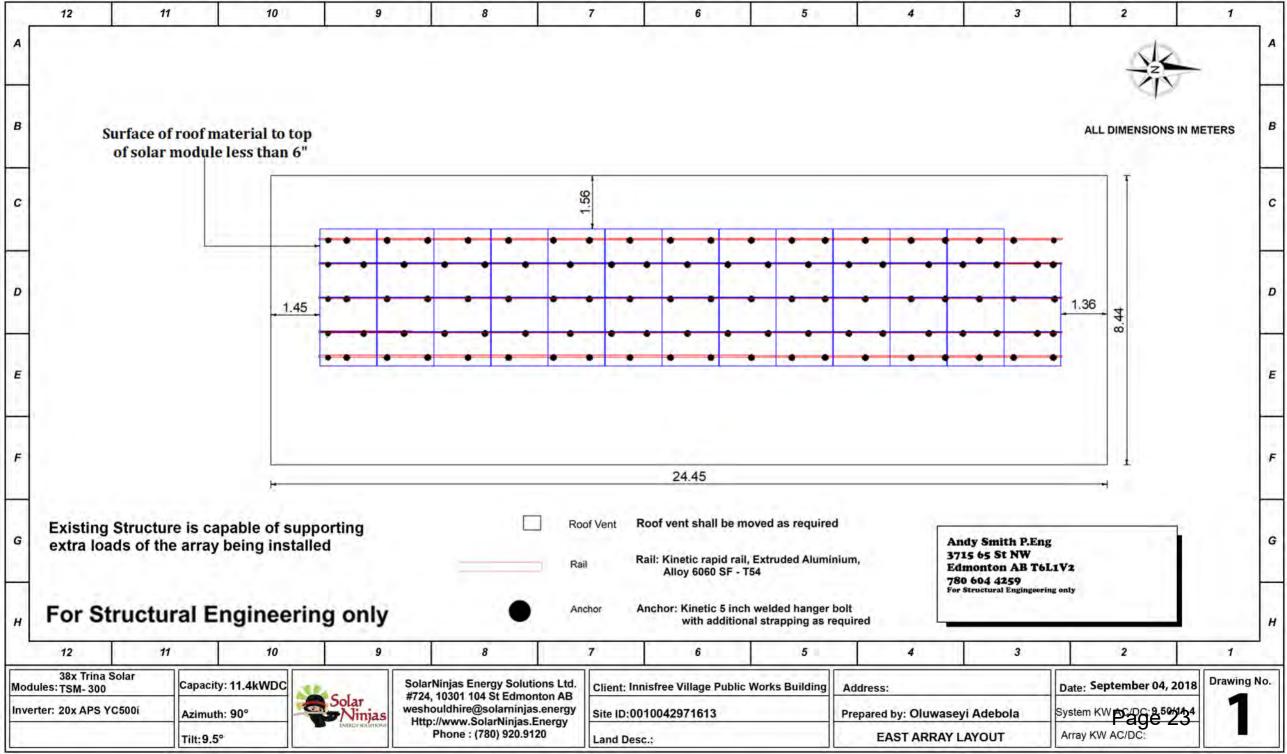

🖧 Condition Set												
Description	Cond	Condition Set 1										
Weather Dataset	TMY,	10kn	n Grid,	mete	onorm	ı (mete	eonorn	n)				
Solar Angle Location	Mete	eo Lat	/Lng									
Transposition Model	Pere	z Moc	lel									
Temperature Model	Sanc	lia Mo	del									
	Rack	Туре		a		b		Te	mper	ature [Delta	
Temperature Model Parameters	Fixe	d Tilt		-3	.56	-0.0	75	3°	С			
	Flus	h Moi	unt	-2	.81	-0.0455		0°	С			
Soiling (%)	J	F	М	А	М	J	J	А	S	0	Ν	D
	8	8	4	4	4	4	4	4	4	4	8	8
Irradiation Variance	5%											
Cell Temperature Spread	4° C											
Module Binning Range	-2.5%	6 to 2	5%									
AC System Derate	0.50	%										
	Module							Characterization				
Module Characterizations	TSM-DE14A(II) PERC MONO 365 (Trina Solar)							Spec Sheet Characterization, PAN				
C	Devi	ce						Char	acteriz	zation		
Component Characterizations	P40) NA (SolarE	dge)				Mfg S	Spec S	Sheet		
	SE14	1.4KU	S (Sola	rEdge)			CEC				

🛓 Compo	onents	
Component	Name	Count
Inverters	SE14.4KUS (SolarEdge)	2 (28.8 kW)
Strings	10 AWG (Copper)	5 (30.2 m)
Optimizers	P400 NA (SolarEdge)	72 (28.8 kW)
Module	Trina Solar, TSM-DE14A(II) PERC MONO 365 (365W)	72 (26.3 kW)

Wiring Wir	Zones								
Description		Combiner Poles		Str	ing Size	Stringing S	Strategy		
East		12		9-1	6	Along Racl	king		
Field Seg	ments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
East	Flush Mount	Landscape (Horizontal)	40°	180°	2.4 m	4x1	12	36	13.1 kW
West	Flush Mount	Landscape (Horizontal)	40°	180°	2.4 m	4x1	9	36	13.1 kW

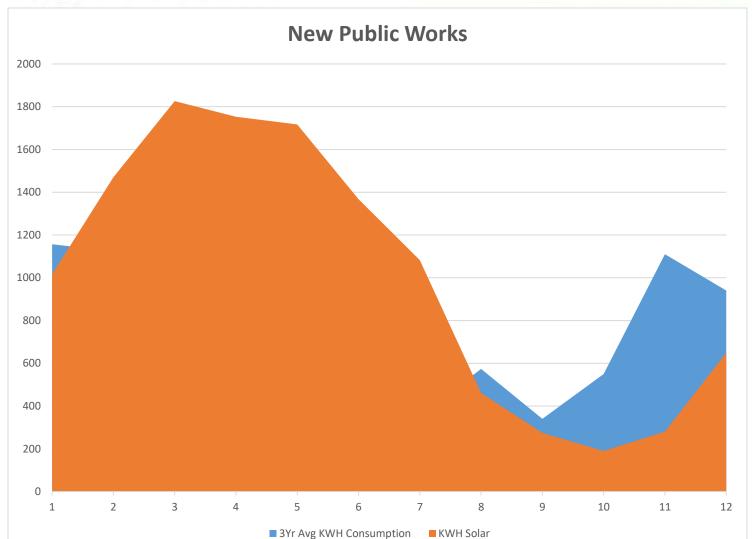
Innisfree New Public Works Building

The new public works building has a long future of expanding usage including transition to electric equipment & vehicles. It has a beneficial roof slope for solar. So beneficial in fact that it is indicating a strong annual surplus of energy that we will have to document a plan for in order to meet ATCOs interpretation of the Micro-Generation Regulation. The system will completely maximize the electrical panel, without exceeding one third of the roof space leaving lots of room for future upgrades.


Solar energy value using September 2018 rates are initially almost \$670 per year. Energy billing for the previous 12 months was only \$618 for energy and a total of \$2485 including GST and transmission/distribution costs.

Based on 3year averages, solar is estimated to offset 135% of energy consumption at the site however the previous 12 months would have been a 149% offset indicating strong efficiency gains. Transmission savings will magnify this amount.

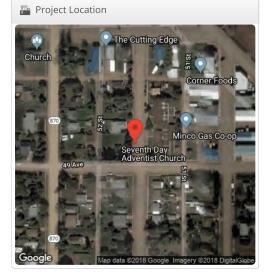
This site matches equipment with the village office and in combination would net some additional equipment cost and installation time savings.

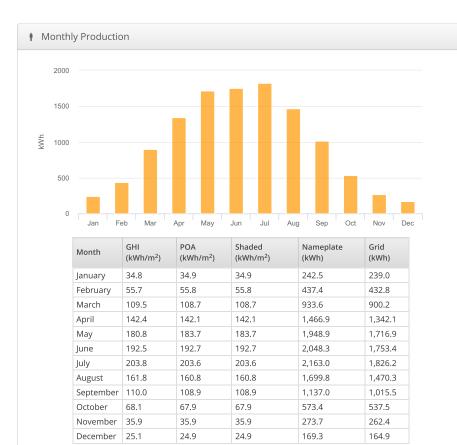


mike@solarninjas.energy 🖂

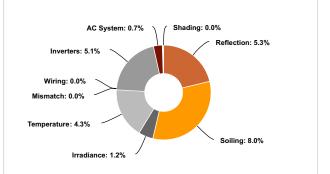
Www.SolarNinjas.Energy 🌐

Estimate Month	3Yr Avg KWH Consumption	KWH Solar	Difference KWH	Energy Offset
1	1156.667	1015.6	141.067	87.80%
2	1123.333	1470.3	-346.967	130.89%
3	1123.333	1826.2	-702.867	162.57%
4	870	1753.4	-883.4	201.54%
5	460	1716.9	-1256.9	373.24%
6	326.666	1368	-1041.334	418.78%
7	353.3333	1082.4	-729.0667	306.34%
8	573.3334	461.7	111.6334	80.53%
9	340	274.2	65.8	80.65%
10	550	189.7	360.3	34.49%
11	1110	280.4	829.6	25.26%
12	940	649.4	290.6	69.09%
Total or Average	8926.6657	12088.2	-3161.5343	135.42%





38 Module Yc500i Innisfree Public Works Building, Innisfree, AB T0B 2G0


🗟 Report	
Project Name	Innisfree Public Works Building
Project Address	Innisfree, AB T0B 2G0
Prepared By	Michael Thomas mike@solarninjas.energy

I System Met	rics
Design	38 Module Yc500i
Module DC Nameplate	11.4 kW
Inverter AC Nameplate	9.50 kW Load Ratio: 1.20
Annual Production	11.66 MWh
Performance Ratio	77.5%
kWh/kWp	1,022.9
Weather Dataset	TMY, 10km Grid, meteonorm (meteonorm)
Simulator Version	1468d8055c-52441aee5c-623e099696- b542d03352

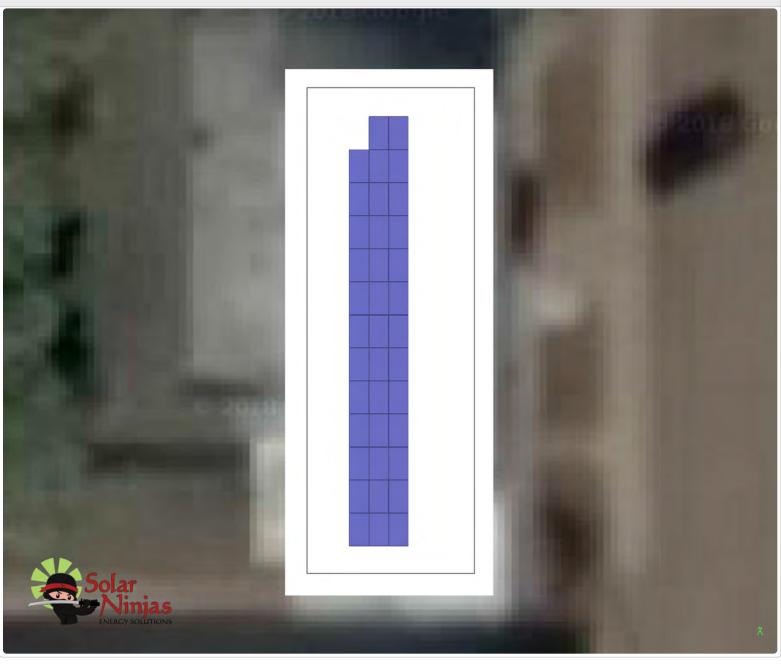
🙀 Sources of System Loss

Solar Nin

Annual Production Report produced by Michael Thomas

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,320.4	
	POA Irradiance	1,320.0	0.09
Irradiance	Shaded Irradiance	1,320.0	0.0
(kWh/m²)	Irradiance after Reflection	1,250.7	-5.3
	Irradiance after Soiling	1,150.0	-8.0
	Total Collector Irradiance	1,150.0	0.09
	Nameplate	13,093.8	
	Output at Irradiance Levels	12,932.6	-1.2
	Output at Cell Temperature Derate	12,373.1	-4.3
Energy	Output After Mismatch	12,367.4	0.0
(kWh)	Optimal DC Output	12,367.4	0.0
	Constrained DC Output	12,381.5	0.1
	Inverter Output	11,748.7	-5.0
	Energy to Grid	11,661.2	-0.79
Temperature N	letrics		
	Avg. Operating Ambient Temp		7.1 °
	Avg. Operating Cell Temp		19.9 °
Simulation Met	rics		
	0	perating Hours	460
		Solved Hours	460

Description	Cond	ition S	et 1									
Weather Dataset	TMY,	10km	Grid, r	neteo	norn	n (me	teon	orm	1)			
Solar Angle Location	Mete	o Lat/L	.ng									
Transposition Model	Perez	z Mode	ł									
Temperature Model	Sandi	ia Mod	el									
To you a water was been also	Rack	Туре		а		b			Temp	erature	e Delta	
Temperature Model Parameters	Fixed	d Tilt		-3.5	56	-0.0	75		3°C			
	Flush Mount			-2.8	31	-0.0	455		0°C			
Soiling (%)	J	F	М	А	М	J	J	A	S	0	Ν	D
50mmg (70)	30	25	20	5	3	3	3	3	3	20	25	30
Irradiation Variance	5%											
Cell Temperature Spread	4° C											
Module Binning Range	-2.5%	to 2.5	%									
AC System Derate	0.50%	6										
	Modu	ule					Cha	ract	erizati	on		
Module Characterizations	TSM- Solar	·DD05/ ′)	A(II) 30	0W (Γrina		Spe PAN		neet Cł	naracte	erizatio	ın,
Component Characterizations	Devid	ce					C	har	acteriz	ation		
component characterizations	YC50	0i (240)V) (AP	S)			C	pec	Sheet			

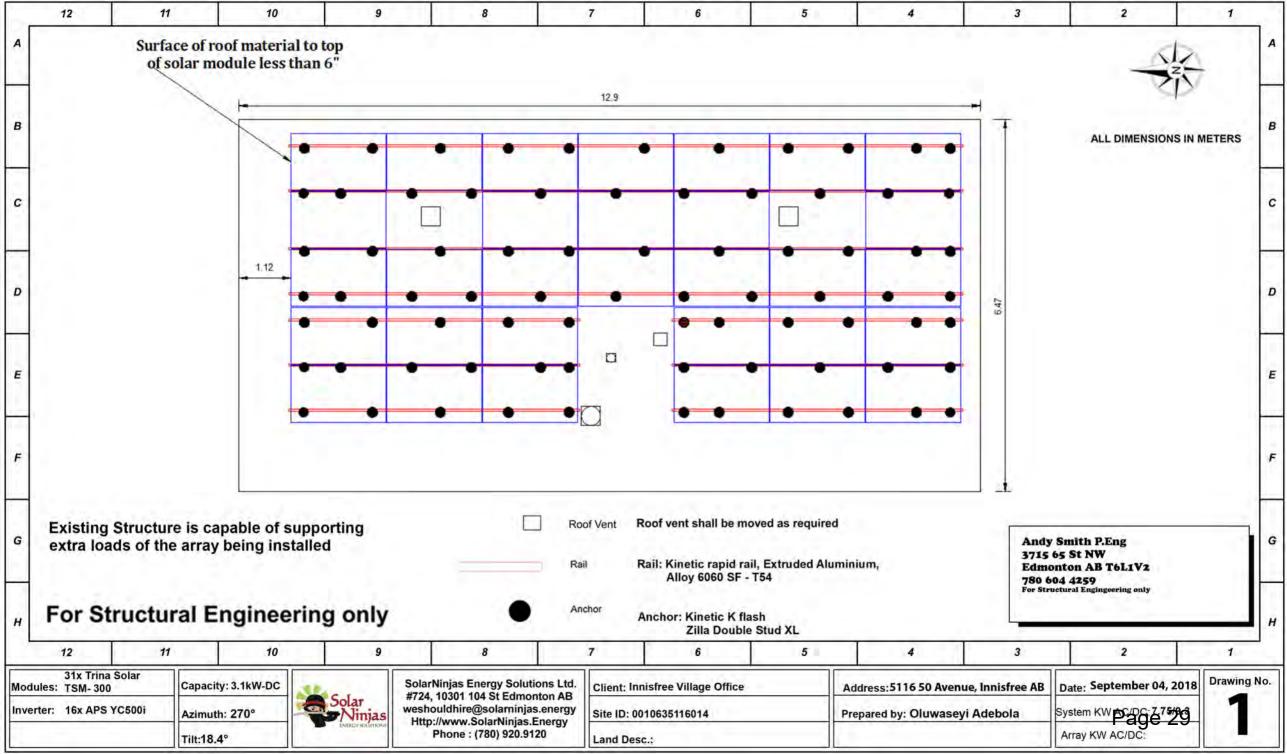

▲ Components										
Component	Name	Count								
Inverters	YC500i (240V) (APS)	19 (9.50 kW)								
AC Panels	3 input AC Panel	1								
AC Home Runs	12 AWG (Copper)	1 (55.7 m)								
AC Branches	8 AWG (Copper)	3 (60.5 m)								
Module	Trina Solar, TSM-DD05A(II) 300W (300W)	38 (11.4 kW)								

Description	Combiner Poles	String Size	Stringing Strategy
East Zone	12	1-1	Along Racking

Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
East Section	Flush Mount	Landscape (Horizontal)	9.5°	90°	0.0 m	1x1	38	38	11.4 kW

Innisfree Village Office

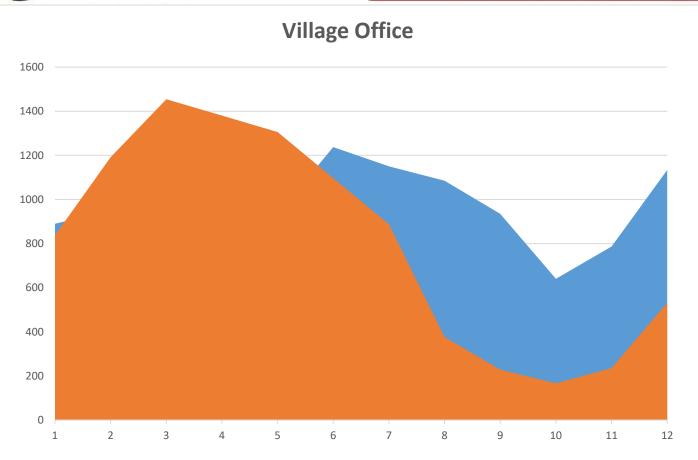
The Village Office represents a residential type solar installation and would be a beautiful showpiece. There are many opportunities to improve energy efficiency in the building, and solar based on a 4 year average is estimated to offset ~86% of energy use. This could reach net zero consumption with efficiency improvements and a little luck. Our ability to fit more solar on the roof around obstacles and use of advanced micro-inverters helps improve performance and project quality.


Late spring currently indicates a net surplus situation with small energy sales according to generation timetables. We advise replacing the main electrical panel and combining the subpanel circuits into a new service meeting current electrical codes.

Averaged solar generation estimates result in direct energy value using August 2018 energy rates of approximately \$520 per year initially. 2018 billing shows \$861 in energy costs and \$2652 in overall costs including GST and transmission charges.

Exorbitant transmission and distribution costs will be addressed to some degree proportionally to solar generation, as transmission costs are usually tied to consumption. Distribution costs tend to be flat.

Equipment choices are based on fall 2018 product availability and may change slightly into spring 2019.

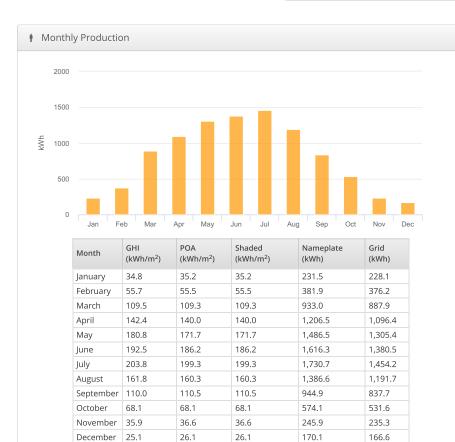


mike@solarninjas.energy 🖂

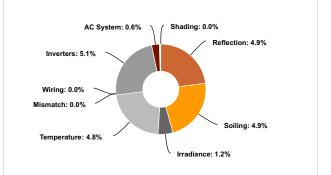
Www.SolarNinjas.Energy 🌐

■ 4Yr Avg KWH Consumption ■ KWH Solar

Estimate Month	4Yr Avg KWH Consumption	KWH Solar	Difference KWH	Energy Offset
1	890	837.7	52.3	94.12%
2	950	1191.7	-241.7	125.44%
3	925	1454.2	-529.2	157.21%
4	695	1380.5	-685.5	198.63%
5	932.5	1305.4	-372.9	139.99%
6	1237.5	1096.4	141.1	88.60%
7	1150	887.9	262.1	77.21%
8	1085	376.2	708.8	34.67%
9	935	228.1	706.9	24.40%
10	640	166.6	473.4	26.03%
11	786.6667	235.3	551.3667	29.91%
12	1133.333	531.6	601.733	46.91%
Total or Average	11359.9997	9691.6	1668.3997	85.31%



31 Module YC500i Innisfree Village Office, 5116 50 Avenue, Innisfree Alberta


🔯 Report	
Project Name	Innisfree Village Office
Project Address	5116 50 Avenue, Innisfree Alberta
Prepared By	Michael Thomas mike@solarninjas.energy

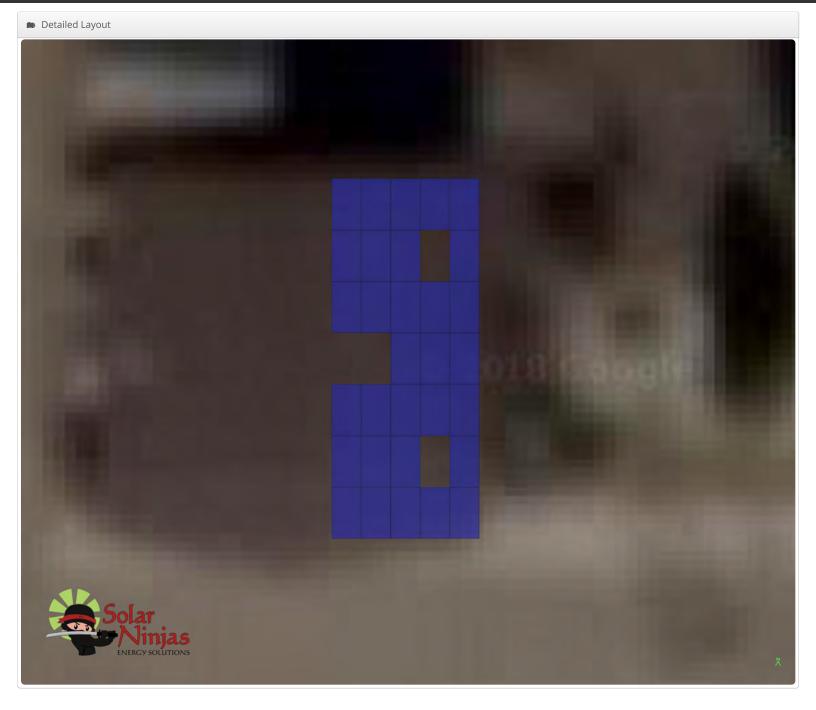
System Metrics									
Design	31 Module YC500i								
Module DC Nameplate	9.30 kW								
Inverter AC Nameplate	8.00 kW Load Ratio: 1.16								
Annual Production	9.691 MWh								
Performance Ratio	80.2%								
kWh/kWp	1,042.1								
Weather Dataset	TMY, 10km Grid, meteonorm (meteonorm)								
Simulator Version	0014cd4152-234c7eae7a-1d399bca3a- 9b26f1b083								

🙀 Sources of System Loss

Solar Nim

Annual Production Report produced by Michael Thomas

🍋 Annual I	Production		
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,320.4	
	POA Irradiance	1,298.8	-1.6%
Irradiance	Shaded Irradiance	1,298.8	0.0%
(kWh/m²)	Irradiance after Reflection	1,235.0	-4.9%
	Irradiance after Soiling	1,174.4	-4.9%
	Total Collector Irradiance	1,174.4	0.0%
	Nameplate	10,908.1	
	Output at Irradiance Levels	10,782.2	-1.2%
	Output at Cell Temperature Derate	10,267.0	-4.8%
Energy	Output After Mismatch	10,262.1	0.0%
(kWh)	Optimal DC Output	10,262.1	0.0%
	Constrained DC Output	10,274.4	0.1%
	Inverter Output	9,748.8	-5.0%
	Energy to Grid	9,691.5	-0.6%
Temperature N	etrics		
	Avg. Operating Ambient Temp		7.1 °C
	Avg. Operating Cell Temp		20.0 °C
Simulation Met	rics		
	Or	erating Hours	4602
		Solved Hours	4602


📲 Condition Set													
Description	Cond	ition S	et 1										
Weather Dataset	TMY,	10km	Grid, n	neteo	onorn	n (me	teon	orm	1)				
Solar Angle Location	Mete	o Lat/L	ng										
Transposition Model	Perez	. Mode											
Temperature Model	Sand	ia Mod	el										
	Rack	Туре		а		b			Tempe	eratur	e Delta		
Temperature Model Parameters	Fixed	d Tilt		-3.5	56	-0.0	75		3°C				
	Flush Mount		-2.8	31	-0.0455			0°C					
Soiling (%)	J	F	М	А	М	J	J	A	S	0	N	D	
50mmg (70)	20	20	3	3	3	3	3	3	3	3	20	20	
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.5%	to 2.5	%										
AC System Derate	0.50%	6											
	Modu	ule					Cha	ract	terizati	on			
Module Characterizations	TSM- Solar	·DD05/ ′)	A(II) 30	0W (Trina		Spe PAN		neet Ch	aract	erizatio	on,	
Component Characterizations	Devid	ce					C	har	acteriz	ation			
component characterizations	YC50	0i (240) (AP	S)			S	pec	: Sheet				

▲ Components										
Component	Name	Count								
Inverters	YC500i (240V) (APS)	16 (8.00 kW)								
AC Panels	3 input AC Panel	1								
AC Home Runs	12 AWG (Copper)	1 (32.5 m)								
AC Branches	8 AWG (Copper)	3 (63.8 m)								
Module	Trina Solar, TSM-DD05A(II) 300W (300W)	31 (9.30 kW)								

escription	Combiner Poles	String Size	Stringing Strategy	
Wiring Zone	12	1-1	Along Racking	

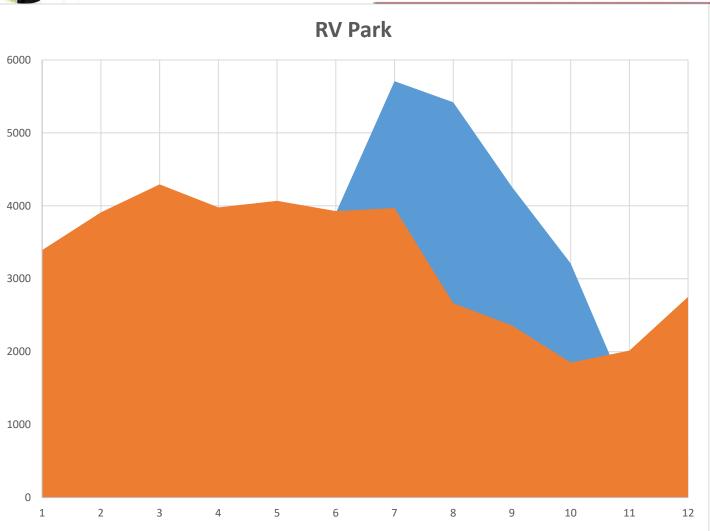
ļ										
	Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
	West Section	Flush Mount	Landscape (Horizontal)	18.4°	270°	0.0 m	1x1	31	31	9.30 kW

Innisfree RV – Recreation Park

The RV Rec Park field nestled against the slope below the highway is in full sun and sure to be an attraction as well as a generator. We were able to match the curve of the landscape with the arrays to enhance performance with reflectivity and maintain a uniform appearance with the environment. It is a long distance from main power connection but well worth the consideration.

Park Energy demands vary dramatically year over year, in order to gain approval from ATCO we used 7 years of records to get a higher average. Actual performance will likely dramatically outpace these estimations, and even so we will be required to submit a detailed plan for how the municipality will use this extra energy in the future in order to meet the requirements of the Micro-Generation Regulation. Site performance is expected to be stellar and we have designed to the limit of the electrical service to maximise benefit.

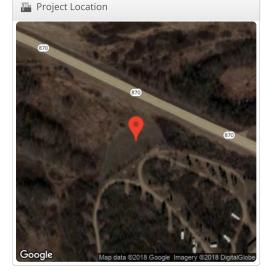
Solar generation is estimated to offset approximately 130% of consumption based on 7 year averages. Based on previous 12 months it would offset 260% of consumption resulting in SIGNIFICANT energy sales and room to grow usage with amenities. Estimated solar energy value using August 2018 energy rates is \$2194 with previous 12 months consumption at \$1190, and total charges with GST and Transmission being \$2805.

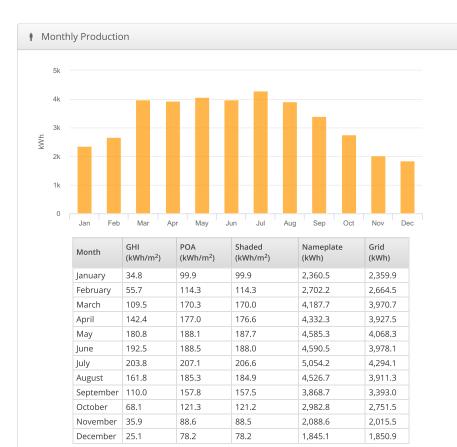

With reductions in transmission charges accompanying the reduced consumption and surplus sales this site is on the cusp of being net zero total billing and appears to be quite easily net positive generation in even the worst conditions. Scaling these savings up with future energy costs gives a very rosy picture of savings.

mike@solarninjas.energy 🖂

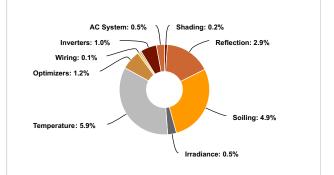
Www.SolarNinjas.Energy 🌐

Consumption Solar


Estimate month	7yr Avg Consumption	KWH Solar	Difference KWH	Energy Offset
1	424.125	3393.1	-2968.975	800.02%
2	311.625	3911.3	-3599.675	1255.13%
3	485.25	4294	-3808.75	884.90%
4	1021.143	3978	-2956.857	389.56%
5	3390.5	4068.2	-677.7	119.99%
6	3899.25	3927.5	-28.25	100.72%
7	5709	3970.7	1738.3	69.55%
8	5420.5	2664.5	2756	49.16%
9	4259.875	2359.9	1899.975	55.40%
10	3210.571	1850.9	1359.671	57.65%
11	1326.857	2015.5	-688.643	151.90%
12	607.667	2751.5	-2143.833	452.80%
Total or Average	30066.363	39185.1	-9118.737	130.33%



SolarEdge Landscape 3 array Innisfree RV Park, Innisfree AB


図 Report			
Project Name	Innisfree RV Park		
Project Address	Innisfree AB		
Prepared By	Michael Thomas mike@solarninjas.energy		

System Metrics			
Design	SolarEdge Landscape 3 array		
Module DC Nameplate	26.3 kW		
Inverter AC Nameplate	22.8 kW Load Ratio: 1.15		
Annual Production	39.19 MWh		
Performance Ratio	83.9%		
kWh/kWp	1,491.1		
Weather Dataset	TMY, 10km Grid, meteonorm (meteonorm)		
Simulator Version	1468d8055c-52441aee5c-623e099696- b542d03352		

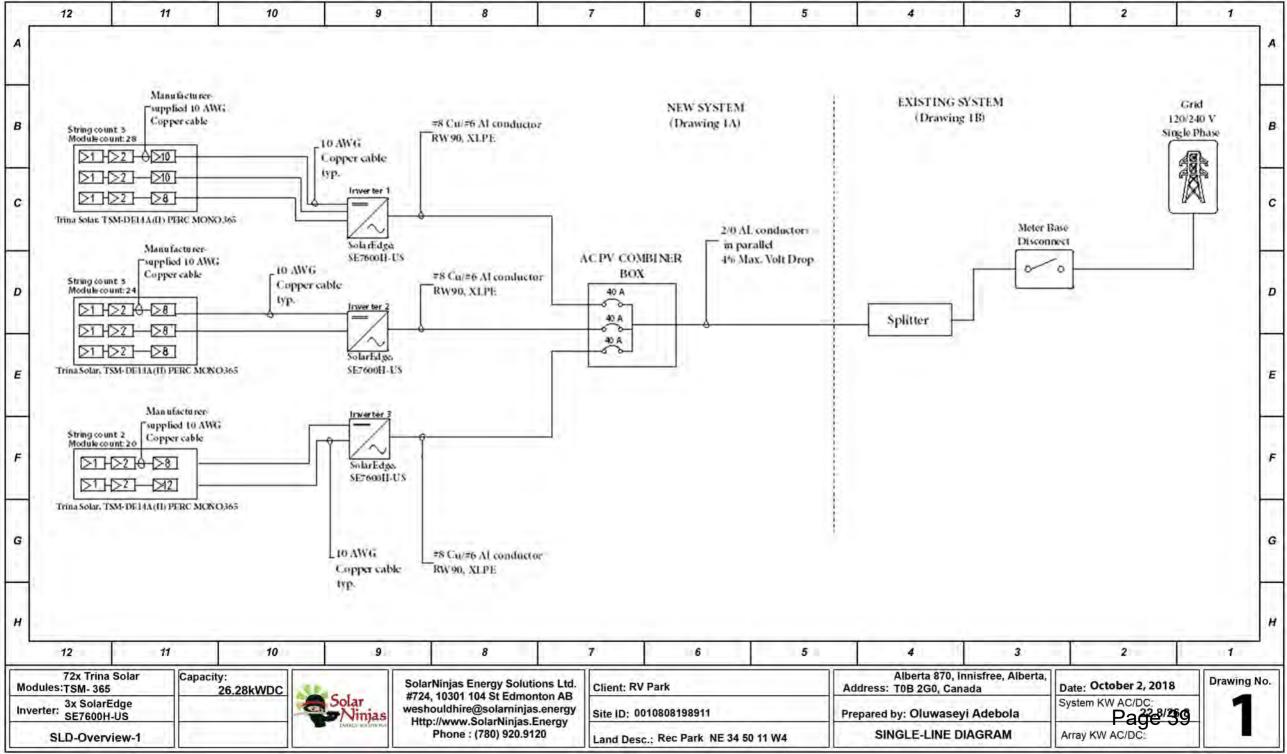
🙀 Sources of System Loss

Solar Nin

Annual Production Report produced by Michael Thomas

🐞 Annual P	roduction		
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,320.4	
	POA Irradiance	1,776.6	34.5%
Irradiance	Shaded Irradiance	1,773.3	-0.2%
(kWh/m²)	Irradiance after Reflection	1,722.6	-2.9%
	Irradiance after Soiling	1,638.8	-4.9%
	Total Collector Irradiance	1,638.7	0.0%
	Nameplate	43,124.6	
	Output at Irradiance Levels	42,892.5	-0.5%
Energy (kWh)	Output at Cell Temperature Derate	40,357.4	-5.9%
	Output After Mismatch	40,357.4	0.0%
	Optimizer Output	39,873.1	-1.2%
()	Optimal DC Output	39,820.5	-0.1%
	Constrained DC Output	39,780.0	-0.1%
	Inverter Output	39,382.2	-1.0%
	Energy to Grid	39,185.3	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		7.1 °C
	Avg. Operating Cell Temp		25.2 °C
Simulation Metr	ics		
	0	perating Hours	4602
		Solved Hours	4602

📇 Condition Set												
Description	Cond	Condition Set 1										
Weather Dataset	TMY,	10kn	n Grid,	mete	onorm	(mete	eonor	m)				
Solar Angle Location	Mete	eo Lat	/Lng									
Transposition Model	Pere	z Moc	del									
Temperature Model	Sanc	Sandia Model										
Temperature Model Parameters		к Туре		a		b		Т	emper	ature [Delta	
		Fixed Tilt			.56	-0.0	75	3	3°C			
	Flush Mount			-2	.81	-0.0455		C	0°C			
Soiling (%)	J	F	М	А	М	J	J	A	S	0	Ν	D
	8	8	4	4	4	4	4	4	4	4	8	8
Irradiation Variance	5%	5%										
Cell Temperature Spread	4° C											
Module Binning Range	-2.5%	6 to 2.	.5%									
AC System Derate	0.50	%										
	Module							Characterization				
Module Characterizations	TSM-DE14A(II) PERC MONO 365 (Trina Solar)							Spec Sheet Characterization, PAN				
C	Devi	ce						Characterization				
Component Characterizations	P40) NA (SolarE	dge)				Mf	g Spec	Sheet		
	SE76	500H-	US (Sol	arEdg	ge)			Sp	ec She	et		


▲ Components							
Component	Name	Count					
Inverters	SE7600H-US (SolarEdge)	3 (22.8 kW)					
Home Runs	10 AWG (Copper)	6 (29.1 m)					
Combiners	1 input Combiner	3					
Combiners	2 input Combiner	3					
Strings	10 AWG (Copper)	6 (79.3 m)					
Optimizers	P400 NA (SolarEdge)	72 (28.8 kW)					
Module	Trina Solar, TSM-DE14A(II) PERC MONO 365 (365W)	72 (26.3 kW)					

Wiring Zones Second Secon	5		
Description	Combiner Poles	String Size	Stringing Strategy
Centre	12	12-12	Along Racking
West	12	12-12	Along Racking
East	12	12-12	Along Racking

Field Seg	ments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
East	Flush Mount	Landscape (Horizontal)	40°	192°	0.0 m	4x6	2	24	8.76 kW
Centre	Flush Mount	Landscape (Horizontal)	40°	190°	0.0 m	4x6	2	24	8.76 kW
West	Flush Mount	Landscape (Horizontal)	40°	185°	0.0 m	4x6	26	24	8.76 kW

Page 40

Budget Notes

Water Treatment Plant

- Single Project PV Cost Approximately \$74,692 + GST
- Alberta Municipal Solar Program Rebate Approximately \$19,725
- BONUS REBATE 25cents/watt for first time MCCAC application @ \$6,575
- Screw Pile Installation Estimated at approximately \$4,700 + GST
- Electrical from Array Combiner to main power to be performed at cost-plus based on agreed upon rates to best adapt to conditions & save costs with local labour.
- Electrical hookup for utility connection from PumpHouse Circuit Breaker to arrays (100ft distance) Approx \$3725 • + Labour
- 25 Year Solar Panel Warranty
- 12 year Inverter Warranty (Extendable to 25 year @ approx. \$500 ea)

New Public Works

- Single Project Cost Approximately \$37,620 + GST •
- Alberta Municipal Solar Program Rebate Approximately \$8,550
- Post-Rebate system cost Approximately \$29,070
- 25 year Solar Panel Warranty •
- 25 year micro-inverter Warranty ٠
- Conditionally Maintenance Free System.

Village Office

- Single Project Cost Approximately \$30,690 + GST
- Alberta Municipal Solar Program Rebate Approximately \$8,370 ٠
- Post-Rebate system cost Approximately \$22,320
- 25 year Solar Panel Warranty •
- 25 year micro-inverter Warranty
- Conditionally Maintenance Free System.
- Electrical main panel replacement cost \$2,850 to \$4,200 depending on work scope and additional wiring repairs required to bring main service up to current code and eliminate subpanel (all into one new panel).

Rv Park

- Single Project PV Cost Approximately \$74,692 + GST •
- Alberta Municipal Solar Program Rebate Approximately \$19,725
- Screw Pile Installation Estimated at approximately \$4,700 + GST ٠
- Electrical from Array Combiner to main power to be performed at cost-plus based on agreed upon rates as we • can find great cost savings with a local/farmer for trenching instead of electricians.
- Electrical Materials for utility connection from Meter Cabinet to array (600 feet distance) Approx \$5,300 + Labour 25 Year Solar Panel Warranty
- 12 year Inverter Warranty (Extendable to 25 year @ approx. \$700 ea) All above prices based on single project cost. Combining 4 projects will result in group savings.

Page 41

Budget Notes

Please note the following summary includes some additional costs such as screw pile installation and electrical material but omits some costs such as permits & electrical labour for final connections which are always unknown in the case of commercial work. Therefore expect that these values will fluctuate slightly on the water treatment plant and RV - Recreation park based on items like trenching costs, and electrical labour for final days of work doing utility connections. We expect that some savings can be found exploring local options for trenching, labour assistance, and possibly screw pile installation. Communications methods for the two ground mount systems have not been included as they will depend on your choices of cellular or long distance network cabling at an additional cost due to the long distances involved.

The price of our estimation and study package will also be deducted from any work issued based on the scale of the work volume.

Project	Individual Estimated Budget	Rebate	Post-Rebate Estimated Cost
Water Treatment Plant	\$84,117.00	\$26,300.00	\$57,817.00
New Public Works	\$37,620.00	\$8,550.00	\$29,070.00
Village Office	\$30,690.00	\$8,370.00	\$22,320.00
RV - Recreation Park	\$86,792.00	\$19,725.00	\$67,067.00

We anticipate a group savings of \$10,000 to \$12,000 in total should all 4 projects be executed together in a timely fashion.

In pairs, the projects match as follows for some efficiency savings:

- New Public Works
- Village Council office
- **RV Rec Park**
- Water Treatment Plant

All information contained throughout is as accurate as possible, based on the best available information at the time. Over time product availability and pricing may change resulting in slightly higher or lower prices. We consider these budgets and estimations to be very workable but given conditions and timelines can not be considered a "hard" dollar bid but instead a close guide for decision-making purposes.

Additional Information & Documents

Suggested Installation Schedule & order if all four projects authorized:

Ground mount systems can be constructed in winter with a small additional cost for drilling screw piles through frozen ground, however trenching components and electrical connection would have to wait for spring and so we advise another order.

- 1. Screw piles and layout for Water Treatment Plant and RV Rec Park can be marked and installed.
- 2. New Public Works Building
 - a. This job can be executed in winter as the roof is not asphalt shingles and the building is heated for us. There will be some additional labour time for cold weather but even in early spring it is the likeliest first candidate.
 - b. Good weather in January 2019 would be suitable.
- 3. Village Office
 - a. Once temperatures are 2 degrees above or below zero and snow is off the roof, installation can proceed.
 - b. Good weather in March 2019
- 4. RV Park
 - a. Extensive mechanical trenching is required which should be possible by early spring
 - b. Good weather in March April 2019 (likely completion May 2019)
- 5. Water Treatment Plant
 - a. Simultaneous execution with RV Park but final utility interconnection at both sites will depend on weather and ground conditions.
 - b. Good weather in March April 2019 (likely completion May 2019)

Special details for surplus generating sites:

Wires owners are within their rights to force us to justify extensively any surplus generation by providing engineered and paid plans for how you will utilize this energy, a strict and unreasonable interpretation of the MicroGeneration Regulation. ATCO has (after negotiations) agreed with us that as a municipality you should be afforded additional flexibility in those future plans. Increasing power consumption demonstrably at both sites through the winter to demonstrate your increased usage is helpful if you decide to go ahead, and we will work with you to document energy use increases through the use of electric vehicle charging, heat and light as needed to justify the system sizes for your maximum benefit. This applies only to two sites (RV Park and New Public Works Building) where sizeable surplus is expected. This stricter interpretation is new (as recent as October) and we are adapting to meet the requirements.

Additional Efficiency Measures:

While there is nothing required at this time for the RV Rec Park, Water treatment Plant, or New Public Works Building, various measures to be considered for the Village Office include:

- LED lighting upgrade for any remaining fluorescent or incandescent fixtures and bulbs.
- Addition of motion or timer sensor light switches in bathroom
- Upgrade main electrical panel and improve system bonding
- Upgrade all old type electrical outlets and light switches to eliminate arcing, worn, or loose connections, installing dimmers or timers where appropriate.
- Check air conditioning unit for healthy operation, age and efficiency. Adapt its use in summertime to reduce energy demand and if replacement ever warranted ensure highest efficiency model available is chosen.
- Restrict use of block heaters in winter to cords with timers attached, triggered 2 hours before closing hours if in use by staff.
- Study and reduce/eliminate electric heater use in winter for comfort by servicing gas heat system, modifying behaviour slightly, providing warm slippers/boots and comfortable clothing for the season.
- Check operation of any exterior lights and ensure motion sensors are working properly, any lights are LED, and timers are used as appropriate.

Local Opportunity & Involvement:

- Every one of the 4 projects has available work hours for labour assistance to be hired locally which will include trades experience and solar training.
- Nearby Schools to be invited to visit worksites at completion, presentations including material exhibits can be brought to classes to "show & tell".
- Advice and awareness of local law enforcement to be sought so that opportunity crime, theft, or vandalism is reduced during the initial "it's new and expensive looking" period of adjustment while extensive outreach is done to engage community support.

SolarEdge Three Phase Inverters for the 208V Grid for North America

SE9KUS / SE14.4KUS

The best choice for SolarEdge enabled systems

- Specifically designed to work with power optimizers
- Integrated arc fault protection and rapid shutdown for NEC 2014 and 2017, per article 690.11 and 690.12
- UL1741 SA certified, for CPUC Rule 21 grid compliance
- Built-in module-level monitoring
- Internet connection through Ethernet or Wireless
- Small, lightweight, and easy to install outdoors or indoors on provided bracket
- Fixed voltage inverter for longer strings
- Integrated Safety Switch
- Supplied with RS485 Surge Protection Device, to better withstand lightning events

USA-CANADA-GERMANY-UK-ITALY-THE NETHERLANDS-JAPAN-CHINA-AUSTRALIA-ISRAEL-FRANCE-BELGIUM-TURKEY-INDIA-BULGARIA-ROMANIA-HUNGARY-SWEDEN-SOUTH AFRICA-POLAND-CZECH REPUBLIC www.solaredge.us Page 44

solaredge

Three Phase Inverters for the 208V Grid⁽¹⁾ for North America

SE9KUS / SE14.4KUS

4400 V 4400 V elta V 400 V elta V 40 V 40 V 40 V 40 V 40 V 40 V 40 V 40
4400 V elta V V 40 H 40 H 9400 V 300 V 500 V V
elta Va Va 40 / 9400 V 300 Va 500 Va
Va Va 40 / 9400 V 300 V 500 V
Va Va 40 / 9400 V 300 V 500 V
9400 Vi 300 Vi 500 Vi
40 / / 40 / / 9400 / V 300 / V 500 / V
40 / / 40 / / 9400 / V 300 / V 500 / V
40 40 40 40 40 40 40 40 40 40 40 40 40 4
40 40 40 40 40 40 40 40 40 40 40 40 40 4
9400 V 300 V 500 V
9400 V 300 V 500 V
300 Vi 500 Vi Vi
500 Va
500 Va
Ve
Ve
38 A
A
Sensitivity ⁽³⁾
97 97
< 4 V
nnect ⁽⁴⁾
intect
cording to T.I.L. M-07
um / 8-4 AWG
bairs ⁽⁵⁾
in /
in /
5 / 45 lb /
6 / 48 lb /
< 55 dI
°F /
·····

(1) For 277/480V inverters refer to: http://www.solaredge.com/files/pdfs/products/inverters/se-three-phase-us-inverter-datasheet.pdf

© SolarEdge Technologies, Inc. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: 11/2017/V01/ENG NAM. Subject to change without notice.

solar<mark>edge</mark>

Single Phase Inverter with HD-Wave Technology

for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US / SE7600H-US / SE10000H-US / SE11400H-US

Optimized installation with HD-Wave technology

- Specifically designed to work with power optimizers
- Record-breaking efficiency
- Fixed voltage inverter for longer strings
- Integrated arc fault protection and rapid shutdown for NEC 2014 and 2017, per article 690.11 and 690.12
- UL1741 SA certified, for CPUC Rule 21 grid compliance
- Extremely small
- High reliability without any electrolytic capacitors
- Built-in module-level monitoring
- Outdoor and indoor installation
- Optional: Revenue grade data, ANSI C12.20 Class 0.5 (0.5% accuracy)

solaredge

Single Phase Inverter with HD-Wave Technology for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US/ SE7600H-US / SE10000H-US / SE11400H-US

	SE3000H-US	SE3800H-US	SE5000H-US	SE6000H-US	SE7600H-US	SE10000H-US	SE11400H-US	
OUTPUT								
Rated AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400	VA
Max. AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400	VA
AC Output Voltage MinNomMax. (183 - 208 - 229)	-		-		-	-	-	Vac
AC Output Voltage MinNomMax. (211 - 240 - 264)								Vac
AC Frequency (Nominal) Maximum Continuous Output Current		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	59.3 - 60 - 60.5	(1)	·····	· · · · · · · · · · · · · · · · · · ·	Hz
208V Maximum Continuous Output Current	-	16	-	24	-	-	-	A
@240V	12.5	16	21	25	32	42	47.5	A
GFDI Threshold Utility Monitoring, Islanding Protection,		• • • • • • • • • • • • • • • • • • • •	•••••	1 Yes		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	A
Country Configurable Thresholds INPUT				165				
Maximum DC Power @240V	4650	5900	7750	9300	11800	15500	17650	W
Maximum DC Power @208V Transformer-less, Ungrounded		5100	.	7750 Yes	l .	l	.	
Maximum Input Voltage Nominal DC Input Voltage		480 380 400						Vdc Vdc
Maximum Input Current 208V		9	-	13.5		- 27	-	
Maximum Input Current @240V Max. Input Short Circuit Current	8.5	10.5	13.5	16.5 45	20	27	30.5	Adc Adc
Reverse-Polarity Protection		• • • • • • • • • • • • • • • • • • • •	•••••	Yes	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
Ground-Fault Isolation Detection Maximum Inverter Efficiency	99	600kΩ Sensitivity 99 99.2						%
CEC Weighted Efficiency		• • • • • • • • • • • • • • • • • • • •	•••••	99	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	%
Nighttime Power Consumption				< 2.5				W
ADDITIONAL FEATURES				ZieDee (antienel		(mal)		1
Supported Communication Interfaces Revenue Grade Data, ANSI C12.20 Rapid Shutdown - NEC 2014 and 2017		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	ZigBee (optional Optional ⁽²⁾	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
690.12		A	utomatic Rapid	Shutdown upon	AC Grid Disconi	nect		
STANDARD COMPLIANCE			1 64 111 1 6000	CCA C22 2 Care			7	
Safety Grid Connection Standards		UL1741, UL174	IEEE1	547, Rule 21, Rul	e 14 (HI)	ding to T.I.L. M-O	/	
Emissions				FCC Part 15 Class	s B			
INSTALLATION SPECIFICATIONS								
AC Output Conduit Size / AWG Range DC Input Conduit Size / # of Strings /		• • • • • • • • • • • • • • • • • • • •	minimum / 14-6 um / 1-2 strings		•••••	3/4" minimum	m /14-4 AWG n / 1-3 strings / AWG	
AWG Range Dimensions with Safety Switch (HxWxD)		17.7 x 14.6 x 6.8 / 450 x 370 x 174					7.3 / 540 x 370 .85	in / mm
Weight with Safety Switch	22	/ 10	25.1 / 11.4	26.2 /	11.9	38.8	/ 17.6	lb / kg
Noise			25			<50		dBA
Cooling Operating Temperature Range		Natural C	Convection -13 to +140 / -2	25 to +60 ⁽³⁾ (-40°F		Natural convectio	on	°F / °C
Protection Rating		• • • • • • • • • • • • • • • • • • • •		(Inverter with Sa			• • • • • • • • • • • • • • • • • • • •	L

⁽¹⁾ For other regional settings please contact SolarEdge support
 ⁽²⁾ Revenue grade inverter P/N: SExxxH-US000NNC2
 ⁽³⁾ For power de-rating information refer to: https://www.solaredge.com/sites/default/files/se-temperature-derating-note-na.pdf
 ⁽⁴⁾ -40 version P/N: SExxxH-US000NNU4

© SolarEdge Technologies, Inc. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: 07/2018/V01/ENG NAM. Subject to change without notice.

Page 47

THE

FRAMED 72-CELL MODULE

72 CELL MONOCRYSTALLINE MODULE

335-365W POWER OUTPUT RANGE

18.8% MAXIMUM EFFICIENCY

0~+5W POSITIVE POWER TOLERANCE

Founded in 1997, Trina Solar is the world's leading comprehensive solutions provider for solar energy, we believe close cooperation with our partners is critical to success. Trina Solar now distributes its PV products to over 60 countries all over the world. Trina is able to provide exceptional service to each customer in each market and supplement our innovative, reliable products with the backing of Trina as a strong, bankable partner. We are committed to building strategic, mutually beneficial collaboration with installers, developers, distributors and other partners.

Comprehensive Products And System Certificates

IEC61215/IEC61730/UL1703/IEC61701/IEC62716 ISO 9001: Quality Management System ISO 14001: Environmental Management System ISO14064: Greenhouse gases Emissions Verification OHSAS 18001: Occupation Health and Safety

Management System

the second
5

Excellent low light performance on cloudy days, mornings and evenings

- Advanced surface texturing
- Back surface field
- Selective emitter

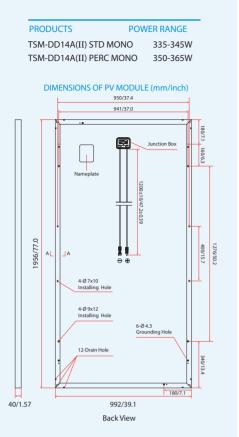
Maximize limited space with top-end efficiency

• Up to 188 W/m² power density

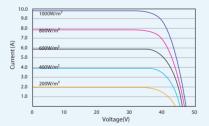
• Low thermal coefficients for greater energy production at high operating temperatures

Highly reliable due to stringent quality control

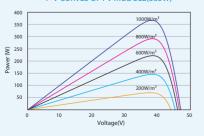
- Over 30 in-house tests (UV, TC, HF, and many more)
- In-house testing goes well beyond certification requirements
- PID resistant
- 100% EL double inspection


Certified to withstand the most challenging environmental conditions

- 2400 Pa wind load
- 5400 Pa snow load
- 35 mm hail stones at 97 km/h



FRAMED 72-CELL MODULE



11/0.43 Silicon Sealant Laminate Frame 35/1.38 (A-A)

I-V CURVES OF PV MODULE(365W)

P-V CURVES OF PV MODULE(365W)

ELECTRICAL DATA (STC)

Peak Power Watts-P _{MAX} (Wp)*	335	340	345	350	355	360	365		
Power Output Tolerance-P _{MAX} (W)	0~+5								
Maximum Power Voltage-V _{MPP} (V)	37.9	38.2	38.4	38.5	38.7	38.9	39.1		
Maximum Power Current-I _{MPP} (A)	8.84	8.90	9.00	9.09	9.17	9.26	9.35		
Open Circuit Voltage-Voc (V)	46.3	46.5	46.7	46.9	47.0	47.2	47.3		
Short Circuit Current-Isc (A)	9.36	9.45	9.50	9.60	9.69	9.79	9.88		
Module Efficiency 府(%)	17.3	17.5	17.8	18.0	18.3	18.5	18.8		
STC: Irradiance 1000W/m ² Cell Temperature 25°C	STC: Irradiance 1000W/m ² Cell Temperature 25°C Air Marc AM1.5								

STC: Irradiance 1000W/m², Cell Temperature 25°C, Air Mass AM1.5. *Measuring tolerance: $\pm 3\%$.

ELECTRICAL DATA (NOCT)

253	257	261	264	268	272
35.2	35.5	35.6	35.8	35.9	36.1
7.19	7.25	7.33	7.40	7.47	7.54
43.2	43.4	43.5	43.7	43.8	43.9
7.63	7.67	7.75	7.82	7.88	7.95
	35.2 7.19 43.2	35.2 35.5 7.19 7.25 43.2 43.4	35.2 35.5 35.6 7.19 7.25 7.33 43.2 43.4 43.5	35.2 35.5 35.6 35.8 7.19 7.25 7.33 7.40 43.2 43.4 43.5 43.7	35.2 35.5 35.6 35.8 35.9 7.19 7.25 7.33 7.40 7.47 43.2 43.4 43.5 43.7 43.8

NOCT: Irradiance at 800W/m², Ambient Temperature 20°C, Wind Speed 1m/s.

MECHANICAL DATA

Monocrystalline 156.	Monocrystalline 156.75 × 156.75 mm (6 inches)				
72 cells (6 × 12)	72 cells (6 × 12)				
1956 × 992 × 40 mm	1956 × 992 × 40 mm (77.0 × 39.1 × 1.57 inches)				
26.0 kg (57.3 lb) with	4.0 mm glass; 22.5 kg (49.6 lb) with 3	.2 mm glass			
4.0 mm (0.16 inches)	4.0 mm (0.16 inches) for PERC Mono; 3.2 mm (0.13 inches) for Standard Mono,				
High Transmission, Al	R Coated Tempered Glass				
White					
Silver Anodized Aluminium Alloy					
IP 67 or IP 68 rated					
Photovoltaic Technol	ogy Cable 4.0mm² (0.006 inches²),				
1200 mm (47.2 inches	5)				
MC4 or Amphenol H4	/UTX				
Type 1 or Type 2					
	MAXIMUM RATINGS				
44°C (±2°C)	Operational Temperature	-40~+85°C			
	72 cells (6 × 12) 1956 × 992 × 40 mm 26.0 kg (57.3 lb) with 4.0 mm (0.16 inches) High Transmission, Al White Silver Anodized Alum IP 67 or IP 68 rated Photovoltaic Technol 1200 mm (47.2 inches) MC4 or Amphenol H4 Type 1 or Type 2	72 cells (6 × 12) 1956 × 992 × 40 mm (77.0 × 39.1 × 1.57 inches) 26.0 kg (57.3 lb) with 4.0 mm glass; 22.5 kg (49.6 lb) with 3 4.0 mm (0.16 inches) for PERC Mono; 3.2 mm (0.13 inches) High Transmission, AR Coated Tempered Glass White Silver Anodized Aluminium Alloy IP 67 or IP 68 rated Photovoltaic Technology Cable 4.0mm ² (0.006 inches ²), 1200 mm (47.2 inches) MC4 or Amphenol H4/UTX Type 1 or Type 2 MAXIMUM RATINGS			

Maximum System Voltage

Max Series Fuse Rating

PACKAGING CONFIGURATION

Modules per box: 27 pieces

Modules per 40' container: 648 pieces

parallel connection)

(DO NOT connect Fuse in Combiner Box with two or more strings in

Temperature Coefficient of PMAX	- 0.39%/°C
Temperature Coefficient of Voc	- 0.29%/°C
Temperature Coefficient of Isc	0.05%/°C

WARRANTY

- 10 year Product Workmanship Warranty
- 25 year Linear Power Warranty
- (Please refer to product warranty for details)

CAUTION: READ SAFETY AND INSTALLATION INSTRUCTIONS BEFORE USING THE PRODUCT. © 2017 Trina Solar Limited. All rights reserved. Specifications included in this datasheet are subject to change without notice. Version number: TSM_EN_2017_C www.trinasolar.com

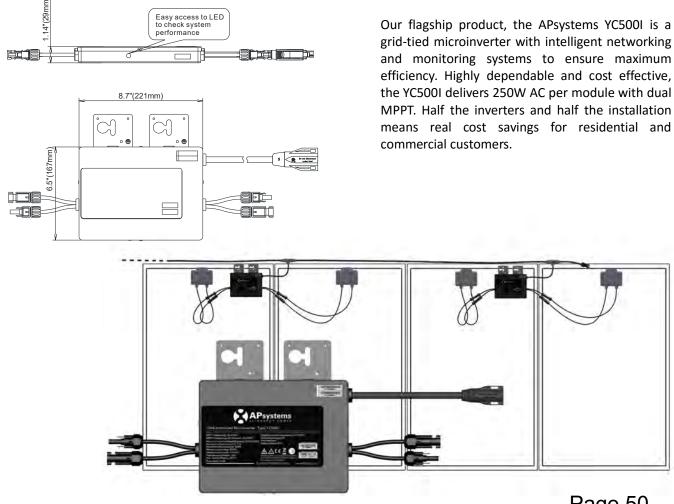
Page 49

1000V DC (IEC)

1000V DC (UL)

15A for 335-350W

20A for 355-365W


Leading the Industry in **Solar Microinverter Technology**

YC500I Microinverter

- Single unit connects two solar modules •
- Individual MPPT for each module •
- Maximum continuous output power 500W •

DIMENSIONS

APsystems YC500I Microinverter Datasheet

Region	North An		
Model	YC5001	-NA	
Input Data (DC)	2014		
MPPT Voltage Range	22V-4		
Operation Voltage Range	16V-52V		
Maximum Input Voltage	55V		
Startup Voltage	22V		
Maximum Input Current	12A x	2	
Output Data (AC)			
Nominal Output Voltage	208V*	240V*	
Peak Output Power	548W	548W	
Maximum Continuous Output Power	500W	500W	
Nominal Output Current	2.4A	2.08A	
Default Output Voltage Range	183V-229V**	211V-264V**	
Maximum Output Fault Current (peak)	33.4A	54.8A	
Maximum Output Fault Current (RMS)	2.79A	4.85A	
Maximum Output Fault Current Duration	1.875ms	1.639ms	
Reactive Current	0.1A	L .	
Extended Output Voltage Range	181V-29	98V	
Nominal Output Frequency	60H;	2	
Default Output Frequency Range	59.3Hz-60	.5Hz**	
Extended Output Frequency Range	55.1Hz -6	4.9Hz	
Power Factor	>0.9	9	
Total Harmonic Distortion	<3%		
Maximum Units Per Branch	6 for 20A Breaker***	7 for 20A Breaker***	
Efficiency	I		
Peak Efficiency	95.5%	6	
CEC Weighted Efficiency	95%		
Nominal MPPT Efficiency	99.5%		
Night Power Consumption	120m		
Mechanical Data			
Operating Ambient Temperature Range	-40° F to +149 ° F (-4	10 °C to +65 °C)	
Storage Temperature Range	-40 °F to +185 °F (-4		
Dimensions (W x H x D)	8.7" × 6.6" × 1.1" (221mr		
Weight	5.5lbs (2		
AC Bus	12AW		
Enclosure Rating	NEMA		
-	Natural Convecti	-	
Cooling Features & Compliance			
· · · · · · · · · · · · · · · · · · ·	Power Line Com	munication	
Communication(Inverter To ECU)			
Emissions & Immunity (EMC) Compliance	FCC Part15; ANSI (
Monitoring	Via EMA So		
Transformer Design	High Frequency Transforme		
Safety Class Compliance Grid Connection Compliance	UL1741,CSA C22 IEEE15		

**Programmable through ECU to meet customer need.

*** Depending on the local regulations.

Specifications subject to change without notice - please ensure you are using the most receiver and the second sec © All Rights Reserved Specifications subject to change without notice - please ensure you are using the most recent update found at www.APsystems.com

THE ALMAX plust

FRAMED 60-CELL MODULE

60 CELL MONOCRYSTALLINE MODULE

275-305W POWER OUTPUT RANGE

18.6% MAXIMUM EFFICIENCY

0~+5W POSITIVE POWER TOLERANCE

Founded in 1997, Trina Solar is the world's leading comprehensive solutions provider for solar energy, we believe close cooperation with our partners is critical to success. Trina Solar now distributes its PV products to over 60 countries all over the world. Trina is able to provide exceptional service to each customer in each market and supplement our innovative, reliable products with the backing of Trina as a strong, bankable partner. We are committed to building strategic, mutually beneficial collaboration with installers, developers, distributors and other partners.

Comprehensive Products And System Certificates

IEC61215/IEC61730/UL1703/IEC61701/IEC62716 ISO 9001: Quality Management System ISO 14001: Environmental Management System ISO14064: Greenhouse gases Emissions Verification OHSAS 18001: Occupation Health and Safety

Management System

aller .
~~E)

Excellent low light performance on cloudy days, mornings and evenings

Advanced surface texturing

- Back surface field
- Selective emitter

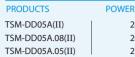
Maximize limited space with top-end efficiency

Up to 186 W/m² power density
Low thermal coefficients for greater energy production at high

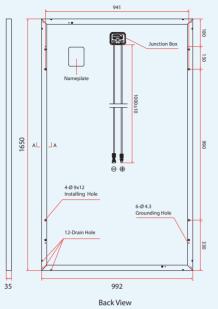
Low thermal coefficients for greater energy production at high operating temperatures

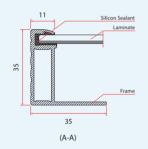
Highly reliable due to stringent quality control

- Over 30 in-house tests (UV, TC, HF, and many more)
- In-house testing goes well beyond certification requirements
- PID resistant
- 100% EL double inspection


Certified to withstand the most challenging environmental conditions

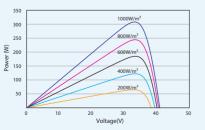
- 2400 Pa wind load
- 5400 Pa snow load
- 35 mm hail stones at 97 km/h




FRAMED 60-CELL MODULE

POWER RANGE 280-305W 280-305W 275-300W

DIMENSIONS OF PV MODULE(mm)



I-V CURVES OF PV MODULE(305W)

P-V CURVES OF PV MODULE(305W)

ELECTRICAL DATA (STC)

Peak Power Watts-P _{MAX} (Wp)*	275	280	285	290	295	300	305
Power Output Tolerance-P _{MAX} (W)				0~+5			
Maximum Power Voltage-V _{MPP} (V)	31.4	31.7	31.8	32.2	32.5	32.6	32.9
Maximum Power Current-I _{MPP} (A)	8.76	8.84	8.97	9.01	9.08	9.19	9.28
Open Circuit Voltage-Voc (V)	38.7	39.0	39.3	39.5	39.7	39.9	40.2
Short Circuit Current-Isc (A)	9.26	9.35	9.45	9.50	9.55	9.64	9.72
Module Efficiency n (%)	16.8	17.1	17.4	17.7	18.0	18.3	18.6

STC: Irradiance 1000W/m², Cell Temperature 25°C, Air Mass AM1.5. *Measuring tolerance: ±3%.

ELECTRICAL DATA (NOCT)

Maximum Power-P _{MAX} (Wp)	205	209	212	216	220	223	227
Maximum Power Voltage-V _{MPP} (V)	29.2	29.4	29.6	29.9	30.2	30.4	30.6
Maximum Power Current-I _{MPP} (A)	7.02	7.10	7.17	7.23	7.28	7.35	7.42
Open Circuit Voltage-Voc (V)	36.0	36.3	36.6	36.7	36.9	37.1	37.3
Short Circuit Current-Isc (A)	7.48	7.55	7.63	7.67	7.71	7.78	7.84

NOCT: Irradiance at 800W/m², Ambient Temperature 20°C, Wind Speed 1m/s.

MECHANICAL DATA

Solar Cells	Monocrystalline 156.75 × 156.75 mm (6 inches)
Cell Orientation	60 cells (6 × 10)
Module Dimensions	1650 × 992 × 35 mm (65.0 × 39.1 × 1.38 inches)
Weight	18.6 kg (41.0 lb)
Glass	3.2 mm (0.13 inches), High Transmission, AR Coated Tempered Glass
Backsheet	White [DD05A(II), DD05A.08(II)];
	Black [DD05A.05(II)]
Frame	Silver Anodized Aluminium Alloy [DD05A(II)];
	Black Anodized Aluminium Alloy [DD05A.08(II), DD05A.05(II)]
J-Box	IP 67 or IP 68 rated
Cables	Photovoltaic Technology Cable 4.0mm ² (0.006 inches ²),
	1000 mm (39.4 inches)
Connector	QC4 / TS4

TEMPERATURE RATINGS	
NOCT (Nominal Operating Cell Temperature)	44°C (±2°C)
Temperature Coefficient of PMAX	- 0.39%/°C
Temperature Coefficient of Voc	- 0.29%/°C
Temperature Coefficient of Isc	0.05%/°C

WARRANTY

10 year Product Workmanship Warranty

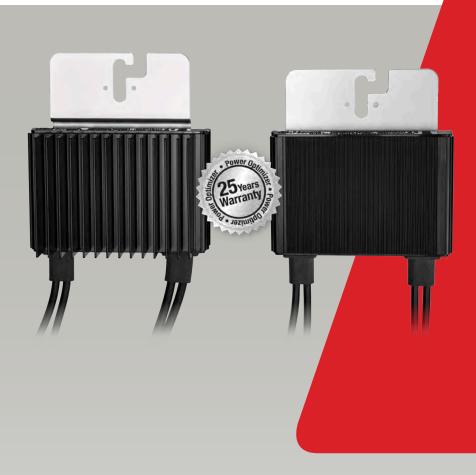
25 year Linear Power Warranty

(Please refer to product warranty for details)

MAXIMUM RATINGS	
Operational Temperature	-40~+85°C
Maximum System Voltage	1000V DC (IEC)
	1000V DC (UL)
Max Series Fuse Rating	15A
(DO NOT connect Fuse in Combiner Box wit parallel connection)	th two or more strings in

PACKAGING CONFIGURATION

- Modules per box: 30 pieces
- Modules per 40' container: 840 pieces


CAUTION: READ SAFETY AND INSTALLATION INSTRUCTIONS BEFORE USING THE PRODUCT.
© 2017 Trina Solar Limited. All rights reserved. Specifications included in this datasheet are subject to change without notice.
Version number: TSM_EN_2017_APAC_A www.trinasolar.com

Page 53

Power Optimizer

P320 / P370 / P400 / P405 / P505

PV power optimization at the module-level

- Specifically designed to work with SolarEdge inverters
- Up to 25% more energy
- Superior efficiency (99.5%)
- Mitigates all types of module mismatch losses, from manufacturing tolerance to partial shading
- Flexible system design for maximum space utilization
- Fast installation with a single bolt
- Next generation maintenance with module-level monitoring
- Meets NEC requirements for arc fault protection (AFCI) and Photovoltaic Rapid Shutdown System (PVRSS)
- Module-level voltage shutdown for installer and firefighter safety

solaredge

Power Optimizer P320 / P370 / P400 / P405 / P505

OPTIMIZER MODEL (typical module compatibility)	P320 (for high-power 60-cell modules)	P370 (for higher-power 60 and 72-cell modules)	P400 (for 72 & 96-cell modules)	P405 (for thin film modules)	P505 (for higher current modules)	
INPUT						,
Rated Input DC Power ⁽¹⁾	320	370	400	405	505	W
Absolute Maximum Input Voltage (Voc at lowest temperature)	48	60	80	125 ⁽²⁾	83 ⁽²⁾	Vdc
MPPT Operating Range	8 - 48	8 - 60	8 - 80	12.5 - 105	12.5 - 83	Vdc
Maximum Short Circuit Current (Isc)	1	1	10	.1	14	Adc
Maximum DC Input Current	13.	75	12.	.63	17.5	Adc
Maximum Efficiency			99.5		******	%
Weighted Efficiency		98	8.8		98.6	%
Overvoltage Category					******	
OUTPUT DURING OPERATION (POWER	OPTIMIZER CONNE	TED TO OPERATIN	G SOLAREDGE INVE	RTER)		1
Maximum Output Current			15			Adc
Maximum Output Voltage		60			35	Vdc
OUTPUT DURING STANDBY (POWER OP	TIMIZER DISCONNE	CTED FROM SOLAF	REDGE INVERTER OR	SOLAREDGE INVER	TER OFF)	1
Safety Output Voltage per Power	· · · · · · · · · · · · · · · · · · ·					Vdc
Optimizer	1 ± 0.1					
STANDARD COMPLIANCE						
EMC Safety RoHS			Class B, IEC61000-6-2, I 109-1 (class II safety), U Yes		••••••	
INSTALLATION SPECIFICATIONS						
Maximum Allowed System Voltage			1000			Vdc
Maximum Allowed System Voltage Compatible inverters		All SolarEdge Si	1000 ingle Phase and Three	Phase inverters		Vdc
Compatible inverters	120 y 122 y 20		**********************	Phase inverters 128 x 152 x 50 /	128 x 152 x 59 /	
Compatible inverters	128 x 152 x 28 ,		ingle Phase and Three		128 x 152 x 59 / 5 x 5.97 x 2.32	
	128 x 152 x 28 , 630 /	/ 5 x 5.97 x 1.1	ingle Phase and Three 128 x 152 x 36 /	128 x 152 x 50 /		Vdc mm / iı gr / lb
Compatible inverters Dimensions (W x L x H) Weight (including cables)		/ 5 x 5.97 x 1.1	ingle Phase and Three 128 x 152 x 36 / 5 x 5.97 x 1.42	128 x 152 x 50 / 5 x 5.97 x 1.96	5 x 5.97 x 2.32	mm / iı
Compatible inverters Dimensions (W x L x H)		/ 5 x 5.97 x 1.1 / 1.4	ingle Phase and Three 128 x 152 x 36 / 5 x 5.97 x 1.42 750 / 1.7	128 x 152 x 50 / 5 x 5.97 x 1.96 845 / 1.9	5 x 5.97 x 2.32	mm / iı
Compatible inverters Dimensions (W x L x H) Weight (including cables) Input Connector Dutput Wire Type / Connector		/ 5 x 5.97 x 1.1 / 1.4	ngle Phase and Three 128 x 152 x 36 / 5 x 5.97 x 1.42 750 / 1.7 MC4 ⁽³⁾	128 x 152 x 50 / 5 x 5.97 x 1.96 845 / 1.9	5 x 5.97 x 2.32	mm / iı
Compatible inverters Dimensions (W x L x H) Weight (including cables) nput Connector Dutput Wire Type / Connector Dutput Wire Length	630 /	/ 5 x 5.97 x 1.1 / 1.4	ngle Phase and Three 128 x 152 x 36 / 5 x 5.97 x 1.42 750 / 1.7 MC4 ⁽³⁾ Double Insulated; MC4	128 x 152 x 50 / 5 x 5.97 x 1.96 845 / 1.9 4 '3.9	5 x 5.97 x 2.32	mm / iı gr / lb
Compatible inverters Dimensions (W x L x H) Weight (including cables) Input Connector	630 /	/ 5 x 5.97 x 1.1 / 1.4	ngle Phase and Three 128 x 152 x 36 / 5 x 5.97 x 1.42 750 / 1.7 MC4 ⁽³⁾ Double Insulated; MC4 1.2 /	128 x 152 x 50 / 5 x 5.97 x 1.96 845 / 1.9 4 '3.9	5 x 5.97 x 2.32	mm / ii gr / lb m / ft

PV SYSTEM DESIGN USING A SOLAREDGE INVERTER ⁽⁴⁾⁽⁵⁾	SINGLE PHASE HD-WAVE	SINGLE PHASE	THREE PHASE 208V	THREE PHASE 480V	
Minimum String Length P320, P370,	P400 8	8	10	18	
(Power Optimizers) P405 / P505	6	6		14	
Maximum String Length (Power Optimizers)	2	25		50 ⁽⁶⁾	
Maximum Power per String	5700 (6000 with SE7600-US - SE11400- US)	5250	6000(7)	12750 ⁽⁸⁾	W
Parallel Strings of Different Lengths or Orientations		Yı	es	• • • • • • • • • • • • • • • • • • • •	

^(a) For detailed string sizing information refer to: http://www.solaredge.com/sites/default/files/string_sizing_na.pdf
 ⁽⁵⁾ It is not allowed to mix P405/P505 with P320/P370/P400/P600/P700/P800 in one string

⁽⁷⁾ For SE14.4KUS/SE43.2KUS: It is allowed to install up to 6,500W per string when 3 strings are connected to the inverter (3 strings per unit for SE43.2KUS) and when the maximum power difference between the strings is up to 1,000W

Strings is up to 1,000w (b) For SE30KUS/SE66.6KUS/SE100KUS: It is allowed to install up to 15,000W per string when 3 strings are connected to the inverter (3 strings per unit for SE66.6KUS/SE100KUS) and when the maximum power difference between the strings is up to 2,000W

© SolarEdge Technologies, Inc. All rights reserved. SOLAREDGE, the SolarEdge logo, OPTIMIZED BY SOLAREDGE are trademarks or registered trademarks of SolarEdge Technologies, Inc. All other trademarks mentioned herein are trademarks of their respective owners. Date: 10/2018/V01/ENG NAM. Subject to change without notice.

Innisfree Village Council

For Services Rendered

Innisfree, Alberta T0B 2G0

5116 50 Ave

Invoice #110

From	SolarNinjas Energy Solutions Ltd. 780 920 9120 mike@solarninjas.energy Http://Www.SolarNinjas.Energy #724. 10301 104st Edmonton AB T5J1B9
Client Phone	780-787-0574
Bill To	5116 50 Ave Innisfree, Alberta T0B 2G0
Issued	2018-11-20
Due	2018-11-20

SERVICE / PRODUCT DESCRIPTION QTY. **UNIT COST** TOTAL 2018-11-21 Design Consult services for 4 potential solar assessment locations will be studied 1 \$4,355.00 \$4,355.00 Innisfree village for 4 sites and the following work product will be produced for the village of Innisfree: - Solar Installation Design complete with equipment suggestions and pricing for individual sites and complete package of 4 sites. - Solar Generation estimations for each site - Shade or other performance issues identified and mitigation plans documented. - Electrical estimating complete for all projects. - Photo documentation of each site - Engineer reviewed structural and electrical drawings for each site - Cost savings estimated based on billing data for each site from utility accounts. - Manufacturer technical information provided on all equipment chosen. - Installation schedule outlined for each project. - Media Plan (How we intend to enable Innisfree to get maximum attention as a result of any projects executed) - Efficiency Improvement plan for energy use at each site (additional tasks to reduce energy use etc) - Plans reviewed by regional authorities (permit issuer, FORTIS etc) for pre-approval of designs. Documentation packages suitable for comparison shopping or issuing for tender.. or approving for us to proceed.

Thank you for your business. Please contact us with any questions regarding this	Subiolal	\$4,300.00
invoice.	GST # (5.0%)	\$217.75
GST 76535 8692	Total	\$4,572.75
	Account balance	\$4,572.75

Subtotal

¢1 255 00

Recieved: BM 2021-03-17 Innistree Camp admin Office 22 +8' 2816Ft2 22 64 - 3072ft² @ 12'×3' panels 29gage - 130 ft cave flashing - 100 ft gable flashing - 4" plumbing vent-boot = 116' strapping 1×4" rough lumber - 70" ridge cap - 2816ft2 @ \$3.00/szft=\$8448.00 Total materials ____\$6144 Total labour _____\$2304 Total \$8448.00 Kevin Moyen 587-280-8388 P.O. Box 56 Innistree ab. 780TOB 1290 886, Brocke

keumayen 10@gmail.com